Let \hat{g} be an untwisted affine Kac–Moody algebra. The quantum group U_q(\hat{g}) is known to be a quasitriangular Hopf algebra (to be precise, a braided Hopf algebra). Here we prove that its unrestricted specializations at odd roots of 1 are braided too: in particular, specializing q at 1 we have that the function algebra F_q[Ĥ] of the Poisson proalgebraic group Ĥ dual of Ĝ - a Kac–Moody group with Lie algebra \hat{g} - is braided. This in turn implies also that the action of the universal R-matrix on the tensor products of pairs of Verma modules can be specialized at odd roots of 1.

Gavarini, F. (2001). The R-matrix action of untwisted affine quantum groups at roots of 1. JOURNAL OF PURE AND APPLIED ALGEBRA, 155(1), 41-52 [10.1016/S0022-4049(99)00117-6].

The R-matrix action of untwisted affine quantum groups at roots of 1

GAVARINI, FABIO
2001-01-08

Abstract

Let \hat{g} be an untwisted affine Kac–Moody algebra. The quantum group U_q(\hat{g}) is known to be a quasitriangular Hopf algebra (to be precise, a braided Hopf algebra). Here we prove that its unrestricted specializations at odd roots of 1 are braided too: in particular, specializing q at 1 we have that the function algebra F_q[Ĥ] of the Poisson proalgebraic group Ĥ dual of Ĝ - a Kac–Moody group with Lie algebra \hat{g} - is braided. This in turn implies also that the action of the universal R-matrix on the tensor products of pairs of Verma modules can be specialized at odd roots of 1.
8-gen-2001
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
quasitriangular Hopf algebras; R-matrices; quantum groups
http://www.sciencedirect.com/science/article/pii/S0022404999001176
Gavarini, F. (2001). The R-matrix action of untwisted affine quantum groups at roots of 1. JOURNAL OF PURE AND APPLIED ALGEBRA, 155(1), 41-52 [10.1016/S0022-4049(99)00117-6].
Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
aqgr-mat-ref.pdf

accesso aperto

Descrizione: This is the PDF file of the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 157.43 kB
Formato Adobe PDF
157.43 kB Adobe PDF Visualizza/Apri
aqgr-mat_STA.pdf

solo utenti autorizzati

Descrizione: This is the PDF file of the Editor's (Elsevier) printed version - Authors' own offprint copy
Licenza: Copyright dell'editore
Dimensione 124.21 kB
Formato Adobe PDF
124.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 226.43 kB
Formato Adobe PDF
226.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 149.92 kB
Formato Adobe PDF
149.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/19247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact