We consider the evolution by mean curvature flow of a closed sub-manifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.

Pipoli, G., Sinestrari, C. (2017). Mean curvature flow of pinched submanifolds of CPn. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 25(4), 799-846 [10.4310/CAG.2017.v25.n4.a3].

Mean curvature flow of pinched submanifolds of CPn

Sinestrari, C.
2017-01-01

Abstract

We consider the evolution by mean curvature flow of a closed sub-manifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.
2017
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Carlo Sinestrari was partially supported by FIRB–IDEAS project “Analysis and beyond” and by the group GNAMPA of INdAM (Istituto Nazionale di Alta Matematica).
Pipoli, G., Sinestrari, C. (2017). Mean curvature flow of pinched submanifolds of CPn. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 25(4), 799-846 [10.4310/CAG.2017.v25.n4.a3].
Pipoli, G; Sinestrari, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CAG_25_04_A03.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 324.74 kB
Formato Adobe PDF
324.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/191734
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact