In suitable states, the modular group of local algebras associated with unions of disjoint intervals in chiral conformal quantum field theory acts geometrically. We translate this result into the setting of boundary conformal QFT and interpret it as a relation between temperature and acceleration. We also discuss novel aspects (“mixing” and “charge splitting”) of geometric modular action for unions of disjoint intervals in the vacuum state.

Longo, R., Martinetti, P., Rehren, K. (2010). Geometric modular action for disjoint intervals and boundary conformal field theory. REVIEWS IN MATHEMATICAL PHYSICS, 22, 331-354 [10.1.1.159.1776].

Geometric modular action for disjoint intervals and boundary conformal field theory

LONGO, ROBERTO;
2010-01-01

Abstract

In suitable states, the modular group of local algebras associated with unions of disjoint intervals in chiral conformal quantum field theory acts geometrically. We translate this result into the setting of boundary conformal QFT and interpret it as a relation between temperature and acceleration. We also discuss novel aspects (“mixing” and “charge splitting”) of geometric modular action for unions of disjoint intervals in the vacuum state.
2010
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
-Operator Algebras -Conformal Field Theory-von Neumann Algebras-Quantum Field theory-Local conformal Nets
http://www.esi.ac.at/preprints/esi2200.pdf
Longo, R., Martinetti, P., Rehren, K. (2010). Geometric modular action for disjoint intervals and boundary conformal field theory. REVIEWS IN MATHEMATICAL PHYSICS, 22, 331-354 [10.1.1.159.1776].
Longo, R; Martinetti, P; Rehren, K
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
LMR_RMP10.pdf

accesso aperto

Descrizione: articolo
Licenza: Creative commons
Dimensione 403.68 kB
Formato Adobe PDF
403.68 kB Adobe PDF Visualizza/Apri

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/19144
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
social impact