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In suitable states, the modular group of local algebras associated with unions of disjoint
intervals in chiral conformal quantum field theory acts geometrically. We translate this
result into the setting of boundary conformal QFT and interpret it as a relation between
temperature and acceleration. We also discuss novel aspects (“mixing” and “charge
splitting”) of geometric modular action for unions of disjoint intervals in the vacuum
state.
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1. Introduction

Geometric modular action is a most remarkable feature of quantum field theory [2],
emerging from the combination of the basic principles: unitarity, locality, covariance
and positive energy [1]. It associates thermal properties with localization [17, 30],
and is intimately related to the Unruh effect [34] and Hawking radiation [31]. It
allows for a reconstruction of space and time along with their symmetries [7], and for
a construction of full-fledged quantum field theories [23,16] out of purely algebraic
data together with a Hilbert space vector (the vacuum).
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The modular group [32, Chap. VI, Theorem 1.19] is an intrinsic group of auto-
morphisms of a von Neumann algebra M , associated with a cyclic and separating
vector Φ, provided by the theory of Tomita and Takesaki [17, 32]. In quantum
field theory, M may be the algebra of observables localized in a wedge region
{x ∈ R

4 : x1 > |x0|} and Φ = Ω the vacuum state. In this situation it follows [1]
that the associated modular group is the 1-parameter group of Lorentz boosts in
the 1-direction, which preserves the wedge, i.e. it has a geometric action on the
subalgebras of observables localized in subregions of the wedge.

Geometric modular action was also established for the algebras of observables
localized in lightcones or double cones in the vacuum state in conformally invariant
QFT [5, 16], and for interval algebras in chiral conformal QFT [4]. It is known,
however, that the modular group of the vacuum state is not geometric (“fuzzy”)
for double cone algebras in massive QFT (see, e.g., [2,29]), and the same is true for
the modular group of wedge algebras or conformal double cone algebras in thermal
states [3]. In this contribution, we shall be interested in modular groups for algebras
associated with disconnected regions (such as unions of disjoint intervals in chiral
conformal QFT).

Our starting point is the observation [21] that in chiral conformal QFT (the
precise assumptions will be specified below), for any finite number n of disjoint
intervals Ii on the circle one can find product states (not the vacuum if n > 1) on
the algebras A(

⋃
i Ii) =

∨
iA(Ii) whose modular groups act geometrically inside

the intervals.
For n = 2, let E = I1 ∪ I2 and E′ = S1\E the complement of the closure of

E. By locality, A(E) ⊂ A(E′)′, where the inclusion is in general proper. The larger
algebraA(E′)′ admits the physical re-interpretation as a double cone algebraB+(O)
in boundary conformal QFT [25] as will be explained in Sec. 2.2.

The above state on A(E) can be extended to a state on B+(O) = A(E′)′ such
that the geometric modular action is preserved. We shall compute the geomet-
ric flow in the double cone O in Sec. 2. Adopting the interpretation of ds

dτ as
inverse temperature β (where τ is the proper time along an orbit and s the mod-
ular group parameter) [11, 28], we compute the relation between temperature and
acceleration. There is not a simple proportionality as in the case of the Hawking
temperature.

In Sec. 3, we shall connect our results with a recent work by Casini and
Huerta [9]. In a first quantization approach as in [14], these authors have succeeded
to compute the operator resolvent in the formula of [14] for the modular operator.
From this, they obtained the modular flow for disjoint intervals and double cones in
2 dimensions in the theory of free Fermi fields. Unlike [21], they consider the vacuum
state. They find a geometric modular action in the massless case (including the chi-
ral case), but this action involves a “mixing” (“modular teleportation” [9]) between
the different intervals resp. double cones. We shall discuss how, upon descent to
gauge-invariant subtheories, the mixing leads to the new phenomenon of “charge
splitting” (Sec. 3.3).
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Ignoring the mixing, the geometric part of the vacuum modular flow for two
intervals in the chiral free Fermi model is the same as the purely geometric modular
flow in the previous non-vacuum product state, provided a “canonical” choice for
the latter is made, in the model-independent approach.

We shall make the result of Casini and Huerta (which was obtained by formal
manipulations of operator kernels) rigorous by establishing the KMS property of
the vacuum state with respect to the modular action they found. We shall also
present a preliminary discussion of the question, to what extent the result may be
expected to hold in other than free Fermi theories.

2. Geometric Modular Flow for n-Intervals

Let I �→ A(I) be a diffeomorphism covariant local net on the circle S1: the
orientation-preserving diffeomorphisms γ of S1 are unitarily implemented by U(γ)
such that AdU(γ) mapsA(I) ontoA(γ(I)) and AdU(γ)|A(I) = id |A(I) if γ|I = id |I ;
in particular, for localized diffeomorphisms U(γ) are local observables, associated
with the stress-energy tensor; see, e.g., [27, Sec. 3].

An n-interval is the union E :=
⋃n
k=1 Ik of n open intervals Ik ⊂ S1 (k =

1, . . . , n) with mutually disjoint closure. The complement E′ = S1\E is another
n-interval. If there is an interval I ⊂ S1 such that E = {z ∈ S1 : zn ∈ I}, we write
E = n

√
I, and call E symmetric. In this case, E′ = n

√
I ′. Note that every 2-interval

is a Möbius transform of a symmetric 2-interval, while the same is not true for
n > 2.

We are interested in the algebras

A(E) :=
n∨
i=1

A(Ii) and Â(E) := A(E′)′, (2.1)

and their states with geometric modular action. By Ω we denote the vacuum vector,
and by U the projective unitary representation of the diffeomorphism group in the
vacuum representation, with generators Ln (n ∈ Z) and central charge c.

2.1. Product states with geometric modular action

For n = 1, E ist just an interval and Â(I) = A(I) (Haag duality).

Proposition 1 (Bisognano–Wichmann Property) ([4, Theorem 2.3]). The
modular group of unitaries for the pair (A(I),Ω) is given by the 1-parameter group
of Möbius transformations that fixes the interval I, ∆it

A(I),Ω = U(ΛI(−2πt)).

For I = S1
+ the upper half circle, the generator of the subgroup U(ΛS1

+
(t))

is the dilation operator D = i(L1 − L−1). It follows that D as well as its
Möbius conjugates DI (the generators of the subgroups U(ΛI(t))) are “of modular
origin”:

−2π ·DI = log ∆A(I),Ω. (2.2)
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Fig. 1. Flow ft in the 3-intervals E = 3
q
S1

+ = I1 ∪ I2 ∪ I3 and E′ = 3
q
S1−.

Let now

L
(n)
0 =

1
n
L0 +

c

24
n2 − 1
n

, L
(n)
±1 =

1
n
L±n, (2.3)

and U (n) the covering representation of the Möbius group with generators L(n)
k

(k = 0,±1). The unitary one-parameter groups V (t) = U (n)(ΛI(−2πt)) act on the
diffeomorphism covariant net by

V (t)A(J)V (t)∗ = A(ft(J)) (J ⊂ n
√
I) (2.4)

where the geometric flow ft is given by (cf. Fig. 1)

ft(z) = n
√

ΛI(−2πt)(zn), (2.5)

with the branch of n
√· chosen in the same connected component of E as z, i.e. ft is

a diffeomorphism of S1 which preserves each component of E separately. The same
formulae hold also for J ⊂ n

√
I ′.

The question arises whether for n > 1 the generators D(n)
I of V (t) also have

“modular origin” as in (2.2). However, unlike with n = 1, we have the following
lemma and corollary:

Lemma. In a unitary positive-energy representation of sl(2,R) of weight h > 0,
there is no vector such that DΦ = 0, where D = i(L1 − L−1).

Proof. An orthonormal basis of the representation is given by the vectors |n〉 =
(n!(2h)n)−

1
2Ln−1|h〉, where |h〉 is the lowest weight vector. Solving the eigenvalue

equation L1Φ = L−1Φ by the ansatz Φ =
∑
n cn|n〉, produces a recursion for the

coefficients cn whose solution is not square-summable.

Corollary. For n > 1, no cyclic and separating vector Φ exists in a positive-energy
representation of the net A such that the modular Hamiltonian log ∆A(E),Φ would
equal −2πD(n)

I .

Proof. By modular theory, log ∆A(E),ΦΦ = 0. But because L(n)
0 ≥ c

24
n2−1
n > 0,

the lemma states that no vector Φ can be annihilated by D
(n)
I which is a Möbius

conjugate of D(n).
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Instead, the appropriate generalization of (2.2) for the modular origin of the
generators D(n)

I was given in [21], assuming that the net A is completely rational.
This means that the split property holds and the µ-index µA = [Â(E) : A(E)] is
finite, and implies that A(E) ⊂ Â(E) is irreducible and there is a unique conditional
expectation εE : Â(E) → A(E) [22, Proposition 5 and Sec. 3]. In the sequel, dψ

dψ′

is the Connes spatial derivative for a pair of faithful normal states ψ and ψ′ on a
von Neumann algebra M and its commutant M ′, which is the canonical positive
operator such that ( dψdψ′ )it implements σψt on M and ( dψdψ′ )−it implements σψ

′
t on

M ′ [10, Theorem 9].

Proposition 2 ([21, Corollary 16]). There is a faithful normal state ϕE on
A(E) (E = n

√
I) and a second faithful normal state ϕE′ on A(E′), such that the

following hold: The modular automorphism group σϕE

t is implemented by V (t), σϕE′
t

is implemented by V (−t), and

−2πD(n)
I = log

(
dϕ̂E
dϕE′

)
+
n− 1

2
logµA. (2.6)

Here, ϕ̂E = ϕE ◦ εE extends the state on A(E) to a state on Â(E). Moreover,
dbϕE

dϕE′ = dϕE

dbϕE′ .

The state ϕE on A(E) is given by ϕE := (
⊗n

k=1 ϕk) ◦ χE where χE : A(E) ≡∨n
k=1 A(Ik) →

⊗n
k=1 A(Ik) is the natural isomorphism given by the split property

(Ik are the components of E), and the states ϕk on A(Ik) are given by ϕk =
ω ◦AdU(γk), where ω is the vacuum state, and U(γk) implement diffeomorphisms
γk that equal z �→ zn on Ik. (By locality, ϕk do not depend on the behavior of γk
outside Ik.)

Corollary. Let ϕE and ϕ̂E be the states on A(E) and on Â(E), respectively, as in
Proposition 2. For intervals Jk ⊂ Ik (= the components of E) and F =

⋃n
k=1 Jk,

we have the geometric modular actions

σϕE

t (A(Jk)) = A(ft(Jk)), hence σϕE

t (A(F )) = A(ft(F )), (2.7)

σbϕE

t (A(Jk)) = A(ft(Jk)), and σbϕE

t (Â(F )) = Â(ft(F )). (2.8)

Proof. (2.7) is obvious from (2.4). By the defining implementation properties of
the Connes spatial derivative, we conclude from (2.6), that σbϕE is implemented by
V (t). This implies (2.8), by the U (n)-covariance of the algebras under consideration.

(We include the obvious statement (2.7) for later comparison with the geometric
modular flow in [9], for which only the second equality in (2.7) holds while the first
is violated.)

For n = 1, one may just choose γ = id , so that both ϕI and ϕI′ are given by
the restrictions of the vacuum state, and (2.6) reduces to (2.2).

For n > 1, the state ϕE is different from the vacuum state, but it is rotation
invariant on A(E) in the sense, that ϕE ◦ AdU(rott) = ϕE on A(Jk) for Jk ⊂ Ik
and t small enough that rott(Jk) ⊂ Ik. (rott stands for the rotations z �→ eitz.)
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Namely, if J ⊂ I such that gJ ⊂ I for g in a neighborhood N of the identity of the
Möbius group, then by construction, ϕE ◦ AdU (n)(g) = ϕE on A( n

√
J) for g ∈ N .

In particular, the same is true for the rotations rott with t in a neighborhood of
0. Since U (n)(rott) = U(rott/n) · (complex phase), the rotation invariance on A(E)
follows.

One could actually have chosen any other family of diffeomorphisms γk that map
Ik onto I, resulting in product states ϕ(γk)

E with a different geometric flow on E. In
that case, the unitary 1-parameter group V (t) satisfying the properties of Propo-
sition 2 is a diffeomorphism conjugate of U (n)

I (ΛI(−2πt)). One might expect that
our choice of ϕE is the only one in this class which enjoys the rotation invariance
on A(E). Surprisingly, this is not the case:

Let ϕ(γk)
E be a product state on A(E) that is given on A(Ik) by ω ◦ AdU(γk),

where γk are diffeomorphisms of S1 that map Ik onto I. Then this state is rotation
invariant onA(E), by construction, if and only if ω ◦AdU(hk) are rotation invariant
on A(I), where hk are diffeomorphisms of S1, defined on I by hk(zn) = γk(z)
for z ∈ Ik. In particular, hk map I onto I. The condition that ω ◦ AdU(h) is
rotation invariant on A(I), can be evaluated for the 2-point function of the stress-
energy tensor in that state. Using the inhomogeneous transformation law under
diffeomorphisms h, involving the Schwartz derivative Dzh = h′′′

h′ − 3
2 (h

′′
h′ )2, the

quantity

2c ·

 dht(z)
dz

dht(w)
dw

(ht(z) − ht(w))2


2

+
c2

36
·Dzht(z) ·Dwht(w), (2.9)

where ht = h ◦ rott, must be independent of t for z, w ∈ I and t in a neighborhood
of zero. Working out the singular parts of the expansion in w around z, one finds
that Dzht(z) must be independent of t for z ∈ I. This already implies that the
second (regular) term is separately invariant, so that, in particular, the invariance
condition does not depend on the central charge c. Solving

∂t
(
Dzht(z)

)
= 0 ⇔ z2 ·Dzh(z) = const., (2.10)

when the constant is parametrized as 1
2 (1 − ν2), yields

h(z) = µ(zν) =
Azν +B

Czν +D
for z ∈ I, (2.11)

where µ is a Möbius transformation.a The state ω ◦ AdU(h) is indeed rotation
invariant on A(I) by h ◦ rott(z) = µ ◦ rotνt(zν) and Möbius invariance of ω.

aThe sign of the exponent ν can be reversed by exchanging A ↔ B and C ↔ D. In order that
h takes values in S1, ν must be either real or imaginary, with corresponding reality conditions

on the matrix
“
A B
C D

”
. Requiring h also to preserve the orientation, we find: If ν > 0, then

“
A B
C D

”
∈ SU(1, 1). If iν > 0, then

“
A B
C D

”
∈

“
i 1
−i 1

”
· SL(2,R), where

“
i 1
−i 1

”
is the Cayley

transformation x �→ 1+ix
1−ix

.
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For each value of ν, requiring h to preserve the endpoints of the interval I fixes
the Möbius transformation up to left composition with the 1-parameter subgroup
ΛI(t). Because ω is invariant under ΛI(t), the state ω ◦ AdU(h) is uniquely deter-
mined by the exponent ν in (2.11).

One has therefore a 1-parameter family of product states, all rotation-invariant
on A(I), but with different modular flows on I. Going back to the product states
on A(E) by composition with z �→ zn, there is one parameter νk for each interval,
i.e. for the choice of the states ω ◦ AdU(γk) on A(Ik). The state is invariant also
under “large” rotations by 2π/n, if and only if these parameters are the same for
all k.

2.2. Geometric modular action in boundary CFT

The case n = 2 is of particular interest in boundary conformal quantum field theory
(BCFT) [25]. With every 2-interval E such that −1 �∈ E, one associates a double
cone OE in the halfspace M+ = {(t, x) ∈ R

2 : x > 0} as follows. The boundary
x = 0, t ∈ R is the pre-image of Ṡ1 := S1\{−1} under the Cayley transform
C : R  t �→ z = (1 + it)/(1 − it) ∈ S1. Let E = I− ∪ I+ ⊂ Ṡ1 with I− < I+ in the
counter-clockwise order, and IR

± = C−1(I±) ⊂ R. Then

OE := IR

+ × IR

− ≡ {(t, x) : t± x ∈ IR

±}. (2.12)

(When there can be no confusion, we shall drop the subscript E.)
Now, the algebras

B+(O) := Â(E) (2.13)

have the re-interpretation as local algebras of BCFT, which extend the subalgebras
of chiral observables

A+(O) := A(E) ≡ A(I−) ∨A(I+). (2.14)

Under this re-interpretation, the second statement in (2.8) asserts, that the modular
group σbϕE

t acts geometrically inside the associated diamond O:

σbϕE
s (B+(Q)) = B+(fOs (Q)), (2.15)

where the double cone Q = OF ⊂ O corresponds to a sub-2-interval F ⊂ E, and
the flow fOs on O arises from the pair of flows fs (2.5) on I+ and I−, by the said
transformations, i.e.

fOs (t+ x, t− x) ≡ (us, vs) = (C−1 ◦ fs ◦ C(t+ x), C−1 ◦ fs ◦ C(t− x)). (2.16)

For IR

+ = (a, b) ⊂ R+ and IR

− = (−1/a,−1/b) (corresponding to a symmetric
2-interval E), we have computed the velocity field

∂sus = 2π
(us − a)(aus + 1)(us − b)(bus + 1)

(b− a)(1 + ab) · (1 + u2
s)

=: −2πV O(us) (2.17)

for us ∈ IR

+, and the same equation for vs ∈ IR

−.
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For IR

+ = (a1, b1) and IR

− = (a2, b2) corresponding to a non-symmetric 2-interval
Ẽ, there is a Möbius transformation m that maps Ẽ onto a symmetric interval E.
Choosing the state ϕẼ := ϕE ◦AdU(m) on A(Ẽ), the resulting geometric modular
flow is given by f̃s = m−1 ◦ fs ◦m. Going through the same steps, we find

∂sus = −2πV O(us) = 2π
(u− a1)(u− b1)(u− a2)(u− b2)

Lu2 − 2Mu+N
(2.18)

with

L = b1−a1+b2−a2, M = b1b2−a1a2, N = b2a2(b1−a1)+b1a1(b2−a2). (2.19)

This differential equation is solved by

log− (us − a1)(us − a2)
(us − b1)(us − b2)

= −2πs+ const. (2.20)

The modular orbits for u = t+ x, v = t− x are obtained by eliminating s:

(u− a1)(u − a2)
(u − b1)(u − b2)

· (v − b1)(v − b2)
(v − a1)(v − a2)

= const. (2.21)

2.3. General boundary CFT

Up to this point, we have taken the boundary CFT to be given by B+(O) := Â(E),
which equals the relative commutant B+(O) = A(K)′ ∩ A(L) by virtue of Haag
duality of the local chiral net A. Here, K and L ⊂ Ṡ1 are the open intervals
between I+ and I−, and spanned by I+ and I−, respectively, i.e. L = I+ ∪K ∪ I−.

The general case of a boundary CFT was studied in [25]. If A is completely
rational, every irreducible local boundary CFT net containing A(E) is intermediate
between A(E) and a maximal (Haag dual) BCFT net:

A(I+) ∨A(I−) ≡ A+(O) ⊂ B+(O) ⊂ Bdual
+ (O) ≡ B(K)′ ∩B(L), (2.22)

where I �→ B(I) is a conformally covariant, possibly nonlocal net on Ṡ1, which
extends A and is relatively local with respect to A [25, Proposition 2.9(ii)]. (Its
extension to the circle in general requires a covering). If A is completely rational,
the local subfactors A(I) ⊂ B(I) automatically have finite index (not depending
on I ⊂ Ṡ1) by the same argument as in [20, p. 39], and there are only finitely many
such extensions [19, Theorem 2.4].

There is then a unique global conditional expectation ε, that maps each B(I)
onto A(I). ε commutes with Möbius transformations and preserves the vacuum
state. By relative locality, ε maps B(K)′∩B(L) into (in general, not onto) A(K)′∩
A(L), hence

A(E) ≡ A+(O) ⊂ ε(B+(O)) ⊂ Â(E). (2.23)

The product state ϕ̂E on Â(E) induces a faithful normal state ϕ̂E ◦ ε on B+(O).

Proposition 3. In a completely rational, diffeomorphism invariant BCFT, the
modular group of the state ϕ̂E ◦ ε acts geometrically on B+(Q), Q ⊂ O, i.e.
σbϕE◦ε
s (B+(Q)) = B+(fOs (Q)), where fOs is the flow (2.16).
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Proof. B+(O) is generated by A+(O) and an isometry v [24] such that every
element b ∈ B+(O) has a unique representation as b = av with a ∈ A+(O), and
va = θ(a)v where θ is a dual canonical endomorphism of B+(O) into A+(O). For
a double cone Q ⊂ O, the isometry v may be chosen to belong to B+(Q), in
which case θ is localized in Q. We know that the modular group restricts to the
modular group of A+(O), which acts geometrically, in particular, it takes A+(Q)
to A+(fOs (Q)). It then follows by the properties of the conditional expectation
that σbϕE◦ε

s (v) ≡ vs = usv where us ∈ A(E) is a unitary cocycle of intertwiners
us : θ → θs ≡ σbϕE

s ◦ θ ◦ σbϕE
s

−1. Since σbϕE
s acts geometrically in A+(O), θs is

localized in fOs (Q), and A+(fOs (Q)) · vs = B+(fOs (Q)). This proves the claim.

Thus, in every BCFT, the modular group of the state ϕ̂E ◦ ε on B+(OE) acts
geometrically inside the double cone OE by the same flow (2.20), (2.21).

2.4. Local temperature in boundary conformal QFT

We shall show that the states ϕ̂E ◦ ε, whose geometric modular action we have just
discussed, are manufactured far from thermal equilibrium. We adopt the notion of
“local temperature” introduced in [8], where one compares the expectation values
of suitable “thermometer observables” Φ(x) in a given state ϕ with their expecta-
tion values in global KMS reference states ωβ of inverse temperature β. If one can
represent the expectation values as weighted averages

ϕ(Φ(x)) =
∫
dρx(β)ωβ(Φ(x)) (2.24)

(where the thermal functions β �→ ωβ(Φ(x)) do not depend on x because KMS
states are translation invariant), then one may regard the state ϕ at each point
x as a statistical average of thermal equilibrium states. In BCFT, this analysis
can be carried out very easily for the product states ϕE with the energy density
2T00(t, x) = T (t+ x) + T (t− x) as thermometer observable. One has ωβ(T ( · )) =
π2

24 c β
−2 in the KMS states, while the inhomogeneous transformation law of T under

diffeomorphisms gives ϕE(T (y)) = − c
24π Dyγ±(y) = − c

4π (1+y2)−2 if y ∈ IR± where
γ±(y) = C−1 ◦ (z �→ z2) ◦ C(y) = 2y

1−y2 , i.e. negative energy density inside the
double cone O = IR

+ × IR−. The product states ϕE can therefore not be interpreted
as local thermal equilibrium states in the sense of [8]. The possibility of locally
negative energy density in quantum field theory is well known, and its relation to the
Schwartz derivative in two-dimensional conformal QFT was first discussed in [15].

2.5. Modular temperature in boundary conformal QFT

The “thermal time hypothesis” [11] provides a very different thermal interpretation
of states with geometric modular action. According to this hypothesis, one inter-
prets the norm of the vector ∂s tangent to the modular orbit xµ(s) as the inverse
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temperature βs of the state as seen by a physical observer with accelerated trajec-
tory xµ(s). In the vacuum state on the Rindler wedge algebra, this gives precisely
the Unruh temperature βs = dτ

ds = 2π
κ (τ is the proper time, and κ the acceleration).

One may also give a local interpretation, by viewing βs as the inverse temperature
of the state for an observer at each point whose trajectory is tangent to the unique
modular orbit through that point.

For these interpretations to make sense it is important that ∂s is a timelike
vector. Indeed, it is easily seen that the flow (2.17), (2.18) gives negative sign for
both ∂sus and ∂svs, because the velocity field V O is positive inside the interval.
Hence the tangent vector is past-directed timelike. This conforms with a general
result, proven in more than 2 spacetime dimensions:

Proposition 4 ([32, Satz 6.5]). Let A(O) be a local algebra and Ut a unitary 1-
parameter group such that UtA(Q)U∗

t = A(ftQ) where ft is an automorphism of O
taking double cones in O to double cones. If there is a vector Φ, cyclic and separating
for A(O), such that UtAΦ has an analytic continuation into a strip −β < Im t < 0,
then −∂t(ftx)|t=0 ∈ V+. In particular, the flow of a geometric modular action is
always past-directed null or timelike.

From (2.18), we get the proper time (dτ)2 = du dv and hence the inverse tem-
perature β = dτ

ds as a function of the position xµ = (t, x)

β(t, x)2 =
du

ds

dv

ds
= 4π2 · V O(t+ x)V O(t− x). (2.25)

The temperature diverges on the boundaries of the double cone (V O(ai) = V O(bi) =
0), and is positive everywhere in its interior.

For comparison with the ordinary Unruh effect, we also compute the acceleration
in the momentarily comoving frame

κ =
(
−∂

2xµ
∂τ2

∂2xµ

∂τ2

) 1
2

=
(d2x/dt2)

(1 − (dx/dt)2)3/2
=
u′′v′ − u′v′′

2(u′v′)3/2
, (2.26)

where the prime stands for ∂s, and we have used dx
dt = x′

t′ = u′−v′
u′+v′ and d2x

dt2 =
(dx/dt)′

t′ = 4u
′′v′−u′v′′
(u′+v′)3 . Thus

κ(t, x) =
V O′(u) − V O ′(v)
2
√
V O(u)V O(v)

∣∣∣∣∣
u=t+x, v=t−x

=
V O′(t+ x) − V O ′(t− x)

π−1β(t, x)
(2.27)

as a function of the position (t, x). The product

β(t, x) · κ(t, x) = π
∣∣∂x(V O(t+ x) + V O(t− x)

)∣∣
= π

∣∣∂t(V O(t+ x) − V O(t− x)
)∣∣ (2.28)
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Fig. 2. Influence of the boundary. Left: modular orbit of an arbitrary point in the symmetric
double cone O = {(t, x) : A ≤ t + x ≤ B,− 1

A
≤ t − x ≤ − 1

B
}. Right: a zoom on the modular

orbit (us, vs) going through the center of the double cone. The plot represents the curve (ũs, vs)

where ũs = f ∗ (us − udiag
s ) + udiag

s , with (udiag
s , vs) the straight line joining the two tips of the

double cone (a special vacuum modular orbit in the absence of the boundary), and f = 100 a
zoom factor.

has the maximal value 2π (Unruh temperature) near the left and right edges of the
double cone, and equals 0 along a timelike curve connecting the past and future
tips. This curve is in general not itself a modular orbit.

In general, the modular orbits are not boost trajectories. However, the quanti-
tative departure is very small. As an illustration, we display a true modular orbit,
as well as a plot with one coordinate exaggerated by a zoom factor of 100 (Fig. 2).

There exists however one distinguished modular orbit with a simple dynamics,
namely the boost

usvs = −1 ∀s ∈ R (2.29)

(in the symmetric case, for simplicity) which is a solution of (2.21) for const. = 1.
It is the Lorentz boost of a wedge in M+, whose edge lies on the boundary x = 0.
The same is true also for non-symmetric intervals, although the formula (2.29) is
more involved.

Along this distinguished orbit the inverse temperature (2.25) simply writes

β = 2π
∂sus
us

= 2π
d

ds
lnus. (2.30)
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One can express the proper time τ of the observer following the boost as a function
of the modular parameter

τ(s) = lnus − lnu0, (2.31)

hence β(τ) = 2π V
O(u0e

τ )
u0eτ . Choosing u0 = 1, one can write the inverse temperature

as a function of the proper time in the form

β(τ) = 2π
(sinh(τmax) − sinh(τ)) · (sinh(τ) − sinh(τmin))

(sinh(τmax) − sinh(τmin)) · cosh(τ)
, (2.32)

where τmin and τmax are functions of the coordinates of the double cone. As for
double cones in Minkowski space [28], the temperature is infinite at the tips of the
double cone (τ = τmin or = τmax) and reaches its minimum in the middle of the
observer’s “lifetime”. Unfortunately, for generic orbits we have no closed formula
for the temperature as a function of the proper time, so as to compare with the
“plateau behavior” (constant temperature for most of the “lifetime”) as in [28], that
occurs in CFT without boundary for vacuum modular orbits close to the edges of
the double cone.

3. The Vacuum Modular Flow

Casini and Huerta [9] recently found that the vacuum modular group for the algebra
of a free Fermi field in the union of n disjoint intervals (ak, bk) ⊂ R is given by the
formula √

dxj
dζ

· σt(ψ(xj)) =
∑
k

Ojk(t)

√
dxk(t)
dζ

· ψ(xk(t)). (3.1)

Here,

eζ(x) = −
∏
k

x− ak
x− bk

(3.2)

defines a uniformization function ζ that maps each interval (ak, bk) onto R, and
eζ ∈ R+ has n pre-images xk = xk(ζ), one in each interval, i.e. −∏

l
xk(ζ)−al

xk(ζ)−bl
= eζ .

The geometric modular flow is given byb

ζ(t) = ζ0 − 2πt, (3.3)

i.e. a separate flow xk(t) = xk(ζ − 2πt) in each interval. The orthogonal matrix O
yields a “mixing” of the fields on the different trajectories xi(t), and is determined
by the differential equation

Ȯ(t) = K(t)O(t) (3.4)

bIn [9], the notation is different: the authors “counter” the flow so that the position of σt(ψ(xj (ζ+
2πt))) remains constant, except for the mixing.
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where Kjj(t) = 0 and

Kjk(t) = 2π

√
dxj(t)
dζ

√
dxk(t)
dζ

xj(t) − xk(t)
(j �= k). (3.5)

Remark. The mixing is a “minimal” way to evade an absurd conclusion from
Takesaki’s Theorem ([32, Chap. IX, Theorem 4.2]): Without mixing the modular
group would globally preserve the component interval subalgebras. Then, the Reeh–
Schlieder property of the vacuum vector would imply that the n-interval algebra
coincides with each of its component interval subalgebras.

Proposition 5. For
⋃
k(ak, bk) ⊂ R the Cayley transform of a symmetric

n-interval E = n
√
I ⊂ S1\{−1}, the geometric part (3.3) of the flow (without

mixing) is the same as (2.5).

Proof. We use variables uk = 1+iak

1−iak
, vk = 1+ibk

1−ibk
, z = 1+ix

1−ix , and the identity
2i(x− a) = (1 − ix)(1 − ia)(z − u). Then

eζ = −
∏
k

x− ak
x− bk

= const. ·
∏
k

z − uk
z − vk

= const. · z
n − U

zn − V
(3.6)

where U = unk , V = vnk such that I = (U, V ) ⊂ S1. Therefore, the flow (3.3) is
equivalent to

z(t)n − U

z(t)n − V
= e−2πt · z

n − U

zn − V
, (3.7)

which in turn is easily seen to be equivalent to (2.5).

Keep in mind, however, that the modular group of the product state in Sec. 2.1
does not “mix” the intervals (ak, bk).

Since every 2-interval is a Möbius transform of a symmetric 2-interval, the state-
ment of Proposition 5 is also true for general 2-intervals, with the flow (2.20).

3.1. Verification of the KMS condition

The authors of [9] have obtained the flow (3.1) using formal manipulations. We
shall establish the KMS property of the vacuum state for this flow. Because this
property distinguishes the modular group [32, Chap. VIII, Theorem 1.2], we obtain
an independent proof of the claim.

We take
⋃
k(ak, bk) ⊂ R the Cayley transform of a symmetric n-interval E =

n
√
I ⊂ Ṡ1. We first solve the differential equation (3.4) for the mixing.
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With angular variables x = tan ξ
2 , and π > ξ0 > ξ1 > · · · > ξn−1 > −π, the

non-diagonal elements of the matrix K can be written as

Kkl(t) = 2π ·

√
dxk(t)
dξk(t)

√
dxl(t)
dξl(t)

xk(t) − xl(t)

√
dξk(t)
dz

√
dξl(t)
dz

= 2π ·

√
dξk(t)
dz

√
dξl(t)
dz

2 sin
ξk(t) − ξl(t)

2

(3.8)

for k �= l. For symmetric intervals, ξk = ξ0 − k · 2π
n and dξk

dz = dξ0
dz > 0, hence

Kkl(t) = −2π ·
dξ0(t)
dz

2 sin
(k − l)π

n

= Ωkl · ξ̇0(t), Ωkl =
1

2 sin
(k − l)π

n

. (3.9)

With the constant anti-symmetric matrix Ω = (Ωkl)n−1
k,l=0, we obtain the orthogonal

mixing matrix

Corollary. The mixing matrix is given by

O(t) = e(ξ0(t)−ξ0(0))·Ω. (3.10)

Remark. The mixing matrix O(t) always belongs to the same one-parameter sub-
group of SO(n), with generator Ω. For n = 2, this is just

O(t) =
(cos θ −sinθ
sin θ cos θ

)
with θ(t) =

1
2
(ξ0(t) − ξ0). (3.11)

If E is not symmetric, the general formula is

θ(t) = arctan
Lx0(t) −M√
LN −M2

− arctan
Lx0(0) −M√
LN −M2

(3.12)

with notations as in (2.18).c

Next, we compute the vacuum expectation values 〈σt(ψ(xi))σs(ψ(yj))〉 for xi ∈
Ii, yj ∈ Ij , using (3.1) and 〈ψ(x)ψ(y)〉 = −i

x−y−iε . Passing to angular variables

cThe authors of [9] also compute this angle, but misrepresent it as the arctan of the difference,
rather than the difference of the arctan’s.
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x �→ ξ, y �→ η by

√
dx

√
dy

x− y − iε
=

√
dξ

√
dη

2 sin
ξ − η − iε

2

, (3.13)

this gives

〈σt(ψ(xi))σs(ψ(yj))〉

=
∑
kl

(e(ξ0(t)−ξ0)·Ω)ik (e(η0(s)−η0)·Ω)jl ·
−i

√
dξk(t)
dxi

√
dηl(s)
dyj

2 sin
(
ξk(t) − ηl(s) − iε

2

) . (3.14)

Notice that again dξk, dηl in the square roots do not depend on k and l. To perform
the sums over k and l, we need a couple of trigonometric identities:

Lemma. For n ∈ N and k = 0, 1, . . . , n−1, let sink(α) := sin(α−k πn ). Then (sums
and products always extending from 0 to n− 1):

(i)
∏
k sink(α) = (−2)1−n sin(nα).

(ii) For j = 0, . . . , n− 1 one has
∑

k: k �=j cot((j − k)πn ) = 0.
(iii) For j = 0, . . . , n− 1 one has

∑
k

(e2(α−β)Ω)jk · 1
sink(α)

=
sin(nβ)
sin(nα)

· 1
sinj(β)

. (3.15)

Proof. (i) is just another way of writing
∏
k(z−ωk) = zn−1 where ωk = eik

2π
n are

the nth roots of unity, and z = e2iα. Dividing (i) by sinj(α), taking the logarithm,
and taking the derivative at α = 0, yields (ii). For (iii), we have to show that the
expression

(−2)1−n sin(nα)
∑
k

(e2αΩ)jk · 1
sink(α)

=
∑
k

(e2αΩ)jk
∏
l: l �=k

sinl(α) (3.16)

is independent of α. Taking the derivative with respect to α and inserting (3.9), we
have to show that

∑
k

1

sin(j − k)
π

n

·
∏
l: l �=k

sinl(α) +
∑
k

cos
(
α− k

π

n

)
·

∏
l: l �=j,k

sinl(α) = 0. (3.17)

Writing cos(α−k πn ) = (sink(α) cos((j−k)πn )−sinj(α))/sin((j−k)πn ), this sufficient
condition reduces to the identity (ii).
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Using (3.15) with 2α = ξ0(t)−ηl(s) and 2β = ξ0−ηl(s) in the expression (3.14),
and once again with 2α = η0(s) − ξ0 and 2β = η0 − ξ0, we get

〈σt(ψ(xi))σs(ψ(yj))〉 =
sin

(
n
ξ0 − η0 − iε

2

)
sin

(
n
ξ0(t) − η0(s) − iε

2

) −i
√
dξ0(t)
dxi

√
dη0(s)
dyj

2 sin
(
ξi − ηj − iε

2

) . (3.18)

We exhibit the t- and s-dependent terms:√
dξ0(t)

√
dη0(s)

2 sin
(
nξ0(t) − nη0(s) − iε

2

) =

√
dΞ0(t)

√
dH0(s)

2n sin
(

Ξ0(t) − H0(s) − iε

2

)

=
1
n

√
dX(t)

√
dY (s)

X(t) − Y (s) − iε
. (3.19)

The first equality is the invariance of the 2-point function under a Möbius trans-
formation µ mapping I to S1

+, such that for z = eiξ ∈ E and w = eiη ∈ E we get
µ(zn) = eiΞ = 1+iX

1−iX ∈ S1
+ and µ(wn) = eiH = 1+iY

1−iY ∈ S1
+ with X,Y ∈ R+; the

second equality is again (3.13) for the inverse transformation Ξ �→ X , H �→ Y . By
Proposition 5, the flow on R+ is just X(t) = e−2πt ·X , giving

〈σt(ψ(xi))σs(ψ(yj))〉 =
e−π(t+s)

e−2πtX − e−2πsY − iε
· f(xi, yj). (3.20)

This expression manifestly satisfies the KMS condition in the form

〈ψ(x)σ−i/2(ψ(y))〉 = 〈ψ(y)σ−i/2(ψ(x))〉. (3.21)

We conclude that the KMS condition holds for the Casini–Huerta flow for symmetric
n-intervals:

Corollary. For symmetric n-intervals E = n
√
I, (3.1) is the modular automorphism

group of the algebra A(E) with respect to the vacuum state.

Proof. Smearing with test functions of appropriate support, the KMS property
holds for bounded generators of the CAR algebra A(E). Because ψ is a free field,
the KMS property of the 2-point function in the vacuum extends to the KMS
property of the corresponding quasifree (i.e. Fock) state of the CAR algebra.

Remark. It is quite remarkable that by virtue of the mixing, through the identity
(ii) of the lemma, the ratio of the modular vacuum correlation functions

〈σ(n)
t (ψ(xi))σ

(n)
s (ψ(yj))〉

〈σ(1)
t (ψ(X))σ(1)

s (ψ(Y ))〉
(3.22)
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is independent of the modular parameters t, s. Here, in the numerator σ(n) is the
modular group for a symmetric n-interval ⊂ R, and in the denominator σ(1) is the
modular group for the 1-interval R+.

3.2. Product states for general n-intervals

With hindsight from [9], we can generalize to non-symmetric n-intervals the model-
independent construction of a product state, as in Sec. 2.1, by replacing the function
z �→ zn as follows. If C stands for the Cayley transformation x �→ z = 1+ix

1−ix ,
and

⋃
k(ak, bk) ⊂ R the pre-image of a symmetric n-interval E = n

√
I, then U =

C(ak)n ∈ S1 and V = C(bk)n ∈ S1 do not depend on k. One computes the
uniformization function (3.2) in this case to be given by

eζ = C−1 ◦ µ ◦ (z �→ zn) ◦ C(x) (3.23)

where µ : S1 → S1 is the Möbius transformation Z → C
(

(−1)n−V
(−1)n−U · Z−U

V−Z
)
, that

takes I to S1
+. For a general n-interval E =

⋃
Ik ⊂ Ṡ1, one may choose µ an

arbitrary Möbius transformation, and replace z �→ zn by the function

g(z) := µ−1 ◦ C ◦ eζ ◦ C−1, (3.24)

where ζ is the uniformization function (3.2). Thus, g maps each component Ik onto
the same interval I = µ−1(S1

+), i.e. we haveE = g−1(I). Repeating the construction
of Proposition 2 with factor states ϕk = ω ◦ AdU(γk), where the diffeomorphisms
γk coincide with g on Ik, one obtains a product state with the geometric modular
flow

ft(z) = g−1
(
ΛI(−2πt)g(z)

)
, (3.25)

instead of (2.5). By construction, this flow corresponds to ζ(t) = ζ(0) − 2πt as
before, which in turn coincides with the geometric part of the vacuum modular
flow (3.1).

3.3. Lessons from the free Fermi model

Charge splitting
It is tempting to ask whether, and in which precise sense, the free Fermi field
result extends also to the free Bose case. (The authors of [9] are positive about
this, but did not present a proof.) In the chiral situation, the free Bose net A(I)
(the current algebra with central charge c = 1) is given by the neutral subalgebras
of the complex free Fermi net F (I). Because the vacuum state is invariant under
the charge transformation, there is a vacuum-preserving conditional expectation
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ε : F (I) → A(I), implying that the vacuum modular group of F (E) restricts to the
vacuum modular group of C(E) := ε(F (E)). We have

F (E)
ε ↓

A(E) ⊂ C(E) ⊂ Â(E),
(3.26)

where both inclusions are strict: C(E) contains neutral products of integer charged
elements of F (Ik) in different component intervals, which do not belong to A(E),
while Â(E) contains “charge transporters” [6, 22] for the continuum of superselec-
tion sectors of the current algebra with central charge c = 1, which do not belong
to C(E).

Being the restriction of the vacuum modular group of F (E), the action of the
vacuum modular group of C(E) can be directly read off. It acts geometrically,
i.e. takes C(F ) to C(ft(F )),d but it does not take A(F ) to A(ft(F )), because the
mixing takes a neutral product of two Fermi fields in one component Jk of F to
a linear combination of neutral products of Fermi fields in different components
ft(Jj), belonging to C(ft(F )) but not to A(ft(F )). Let us call this feature “charge
splitting” (stronger than “mixing”).

The inclusion situation (3.26) does not permit to determine the vacuum modular
flow of A(E) from that of C(E), because there is no vacuum-preserving conditional
expectations C(E) → A(E) that would imply that the modular group restricts.
(Of course, this would be a contradiction, because we have already seen that the
modular group of F (E), and hence that of C(E), does not preserveA(E).) Similarly,
we cannot conclude that the vacuum modular flow of Â(E) should extend that of
C(E), or that of A(E). Proposition 6 below actually shows that this scenario must
be excluded.

Application to BCFT
It is instructive to discuss the consequence of the free Fermi field mixing and the
ensuing charge splitting for C(E) under the geometric re-interpretation of boundary
CFT, as in Sec. 2.2. For definiteness and simplicity, we consider the case when A

is the even subnet of the real free Fermi net, i.e. A is the Virasoro net with c = 1
2 .

Unlike the c = 1 free Bose net, this model is completely rational.
The same considerations as in the previous argument apply also in this case:

Again, the inclusions A(E) ⊂ C(E) := ε(F (E)) ≡ F (E)Z2 ⊂ Â(E) are strict, the
latter because charge transporters for the Ramond sector (weight h = 1

16 ) do not
belong to C(E). The vacuum modular flow for C(E) is induced by that for F (E),
but it does not pass to A(E) or Â(E).

dHere and below, F ⊂ E always stands for an n-interval F =
S

k Jk where Jk are the components
of the pre-image of some interval under the function ζ (3.2), i.e. in the symmetric case, F = n

√
J

with J ⊂ I.
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Let therefore E ⊂ Ṡ1 be 2-intervals and O = IR

+ × IR− ⊂ M+ the associated
double cones. The net

O �→ C(O) = F (E)Z2 (3.27)

is a BCFT net intermediate between the “minimal” net A+(O) = A(E) and the
“maximal” (Haag dual) net B+(O) = Â(E), see [25]. It is generated by fields∏n
i=1 ψ(ui)

∏m
j=1 ψ(vj) with n + m = even, and ui smeared in IR

+, vj smeared in
IR

−.
The vacuum modular flow of C(O) mixes ftui with ftu

′
i and ftvj with ftv

′
j ,

where u �→ u′ and v �→ v′ are the bijections of the two intervals onto each other con-
necting the two pre-images of the uniformization function ζ. Hence, if ψ(u)nψ(v)m

(in schematical notation) belongs to C(Q) for a double cone Q ⊂ O, the vacuum
modular flow takes it to linear combinations of

ψ(ftu)n1ψ(ftu′)n2ψ(ftv)m1ψ(ftv′)m2 (3.28)

with n1 + n2 = n, m1 +m2 = m. Grouping the charged factors to neutral (even)
“bi-localized” products, these generators belong to the local algebra of 6 double
cones

∨6
α=1 C(ftQα) ⊂ C(ftQ̂) around 6 points as indicated in Fig. 3.

In spite of the fact that two of the 6 double cones Qα lie outside Q̂, the corre-
sponding algebras C(Qα) are contained in C(Q̂). But their bi-localized generators,

v’

u

v

u’

O

Q

Q
∧

J+

Fig. 3. The 6 regions mixed by the vacuum modular flow in boundary CFT. (u, v) is a point in
Q ⊂ O. The boost is the distinguished orbit in O as in Sec. 2.5, and defines u′ = − 1

u
and v′ = − 1

v
.

If (u, v) lies on the boost, then the points (v, u′) and (v′, u) lie on the boundary. Consequently, if
a double cone Q ⊂ O around (u, v) intersects the distinguished orbit, then four of the 6 associated

double cones Qα merge with each other, while the other two touch the boundary and degenerate
to left wedges. (The flow ft itself, as in Fig. 2, is suppressed.)
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such as ψ(u)ψ(v′), cannot be associated with points in Q̂, because on the boundary
they are localized in the entire interval J+ spanned by u and v′ [26, Sec. 2], hence
belong to

⋂
J− C(J+ × J−) ⊂ C(Q̂). Therefore, in the geometric re-interpretation

of boundary CFT, the discrete mixing (charge splitting) on top of the geometric
modular action induces a truely “fuzzy” action on BCFT algebras associated with
double conesQ ⊂ O! The fuzzyness seems, however, not to be described by a pseudo
differential operator, as suggested in [30, 29], but rather reflects the nonlocality of
an operator product expansion for bi-localized fields.

3.4. Preliminaries for a general theory

Also in the general case of a local chiral net A, there is a notion of “charge split-
ting”: Superselection sectors are described by DHR endomorphisms of the local net,
which are localized in some interval [12, 13]. Intertwiners that change the interval
of localization (charge transporters) are observables, i.e. they do not carry a charge
themselves, but they may be regarded as operators that annihilate a charge in one
interval and create the same charge in another interval. These charge transporters
do not belong to A(E) (where the 2-interval E is the union of the two intervals),
but together with A(E) generate Â(E), see the discussion in [22, Sec. 5]. Therefore,
one may speculate whether the combination of geometric action with charge split-
ting could be a general feature for the vacuum modular group of suitable n-interval
algebras intermediate between A(E) and Â(E), i.e. the modular group does not
preserve the subalgebras A(F ), let alone the algebras of the component intervals
A(Jk).

The discussion of the algebrasA(E) ⊂ C(E) ⊂ Â(E) in the preceding subsection
shows that there cannot be a simple general answer. Nevertheless, we can derive a
few first general results.

Proposition 6. Let Φ ∈ H be a joint cyclic and separating vector for A(E) and
A(E′), e.g., the vacuum.

(i) If the modular automorphism group of (Â(E),Φ) globally preserves the subal-
gebra A(E), then A(E) = Â(E).

(ii) If the adjoint action of the modular unitaries ∆it for (A(E),Φ) globally pre-
serves Â(E), or, equivalently, A(E′) then A(E) = Â(E).

Proof. By assumption, Φ is also cyclic and separating for Â(E) = A(E′)′ and
Â(E′) = A(E)′. Then (i) follows directly by Takesaki’s Theorem [32, Chap. IX,
Theorem 4.2]. For (ii), note that ∆it preserves A(E′) if and only if it preserves
A(E′)′ = Â(E); and ∆−it implements the modular automorphism group for
(A(E)′ = Â(E′),Φ). Thus, the statement is equivalent to (i), with E replaced
by E′.
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The obvious relevance of Proposition 6(ii) is that in the generic case when
Â(E) is strictly larger than A(E), there can be no vector state satisfying the
Reeh–Schlieder property such that A(E) has geometric modular action on A(E)
and on A(E′). In particular, the modular unitaries will not belong to the diffeomor-
phism group, but we may expect that Connes spatial derivatives as in Proposition
2 do.

Recall that we have already seen (in the Remark after (3.4)) that mixing nec-
essarily occurs. By Proposition 6(i), it is not possible that Â(E) has geometric
modular action without charge splitting.

4. Loose Ends

We have put into relation and contrasted the two facts that

(i) in diffeomorphism covariant conformal quantum field theory there is a construc-
tion of states on the von Neumann algebras of local observables associated with
disconnected unions of n intervals (n-intervals), such that the modular group
acts by diffeomorphisms of the intervals [21], and

(ii) in the theory of free chiral Fermi fields, the modular action of the vacuum state
on n-interval algebras is given by a combination of a geometric flow with a
“mixing” among the intervals [9].

The absence of the mixing in (i) can be ascribed to the choice of “product” states
in which quantum correlations across different intervals are suppressed. (In the re-
interpretation of 2-interval algebras as double cone algebras in boundary conformal
field theory [25], the influence of the boundary was shown to weaken — as expected
on physical grounds — in the limit when the double cone is far away from the
boundary [26]. Indeed, it can be seen from the formula (3.12) for the mixing angle
that in this limit the mixing in (ii) also disappears.) On the other hand, there is
some freedom in the choice of product states, which allows to deform the geometric
modular flow within each of the intervals. It comes therefore as a certain surprise
that the geometric part of the vacuum modular flow in (ii) coincides with the purely
geometric flow in the product states in (i), precisely when the latter are chosen in a
“canonical” way (involving the simple function z �→ zn on the circle, corresponding
to ν = 1 in (2.11), in the case of symmetric n-intervals, and the function g (3.24)
in the general case). This means that the relative Connes cocycle between the
vacuum state and the “canonical” product state is just the mixing, while for all
other product states, it will also involve a geometric component.

Two circles of questions arise:
First, is the geometric part of the vacuum flow specific for the free Fermi model,

or is it universal? And if it is universal, what takes the place of the mixing in the
general case? Putting aside some technical complications of the proof, the authors
of [9] claim a universal behavior for free fields, while in this paper, we have given
first indications how the geometric behavior should “propagate” to subtheories and
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to field extensions, also strongly supporting the idea of a universal behavior. Insight
from the theory of superselection sectors suggests that the mixing in the general case
should be replaced by a “charge splitting”. On the other hand, Takesaki’s Theorem
poses obstructions against the idea that charge splitting on top of a geometric
modular flow could be the general answer (Proposition 6).

Second, the notion of “canonical” (ν = 1) in the above should be given a physical
meaning, related to the absence of a geometric component in the Connes cocycle.
In the free Fermi case, the geometric part of the modular Hamiltonian contains
the stress-energy tensor ∼ψ(x)∂xψ(x), while the mixing part can be expressed in
terms of ψ(xk)ψ(xl) with xk and xl belonging to different intervals. The absence of
derivatives suggests that the Connes cocycle is “more regular in the UV” in the case
when the geometric parts coincide, than in the general case. The same should be
true for the generalized product state constructed in Sec. 3.2. A precise formulation
of this UV regularity is wanted.
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