The "quantum duality principle" states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors QUEA ---> QFSHA and QFSHA ---> QUEA , inverse to each other, such that in both cases the Lie bialgebra associated to the target object is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems to be unproved in the literature: I give here a thorough detailed proof of it.

Gavarini, F. (2002). The quantum duality principle. ANNALES DE L'INSTITUT FOURIER, 52(3), 809-834 [10.5802/aif.1902].

The quantum duality principle

GAVARINI, FABIO
2002-01-01

Abstract

The "quantum duality principle" states that the quantization of a Lie bialgebra – via a quantum universal enveloping algebra (in short, QUEA) – also provides a quantization of the dual Lie bialgebra (through its associated formal Poisson group) – via a quantum formal series Hopf algebra (QFSHA) — and, conversely, a QFSHA associated to a Lie bialgebra (via its associated formal Poisson group) yields a QUEA for the dual Lie bialgebra as well; more in detail, there exist functors QUEA ---> QFSHA and QFSHA ---> QUEA , inverse to each other, such that in both cases the Lie bialgebra associated to the target object is the dual of that of the source object. Such a result was claimed true by Drinfeld, but seems to be unproved in the literature: I give here a thorough detailed proof of it.
2002
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
quantum groups; topological Hopf algebras
http://aif.cedram.org/item?id=AIF_2002__52_3_809_0
Gavarini, F. (2002). The quantum duality principle. ANNALES DE L'INSTITUT FOURIER, 52(3), 809-834 [10.5802/aif.1902].
Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
q-d-prin_ART-ref.pdf

accesso aperto

Descrizione: This is the PDF file of the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 220.75 kB
Formato Adobe PDF
220.75 kB Adobe PDF Visualizza/Apri
q-d-prin_STA.pdf

accesso aperto

Descrizione: This is the PDF file of the Editor's (Association des Annales de l'Institut Fourier) printed version - Authors' own offprint copy
Licenza: Copyright dell'editore
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 258.96 kB
Formato Adobe PDF
258.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with the bibliographic metadata of this article
Licenza: Non specificato
Dimensione 150.91 kB
Formato Adobe PDF
150.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/19142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact