Let G be either Sp(V) or O(V). Using an action of the Brauer algebra, we describe the subspace T^k(V^{\otimes m}) ⊆ V^{\otimes m} of tensors of valence k as an induced representation of the symmetric group S_m . As an application, we recover a special case of Littlewood's restriction rule, affording the decomposition of an irreducible GL(V)-module when restricted to G. Moreover we get an explicit realization of the irreducible representations of the Brauer algebra.

Gavarini, F., Papi, P. (1997). Representations of the Brauer algebra and Littlewood's restriction rules. JOURNAL OF ALGEBRA, 194(1), 275-298 [10.1006/jabr.1996.7003].

Representations of the Brauer algebra and Littlewood's restriction rules

GAVARINI, FABIO;
1997-08-01

Abstract

Let G be either Sp(V) or O(V). Using an action of the Brauer algebra, we describe the subspace T^k(V^{\otimes m}) ⊆ V^{\otimes m} of tensors of valence k as an induced representation of the symmetric group S_m . As an application, we recover a special case of Littlewood's restriction rule, affording the decomposition of an irreducible GL(V)-module when restricted to G. Moreover we get an explicit realization of the irreducible representations of the Brauer algebra.
1-ago-1997
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
Classical Invariant Theory; Schur-Brauer-Weyl duality
http://www.sciencedirect.com/science/article/pii/S0021869396970039
Gavarini, F., Papi, P. (1997). Representations of the Brauer algebra and Littlewood's restriction rules. JOURNAL OF ALGEBRA, 194(1), 275-298 [10.1006/jabr.1996.7003].
Gavarini, F; Papi, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
brauerdef-ref.pdf

accesso aperto

Descrizione: This the Authors' own post-print version
Licenza: Copyright dell'editore
Dimensione 174.65 kB
Formato Adobe PDF
174.65 kB Adobe PDF Visualizza/Apri
Brauer_L-restr_STA.pdf

solo utenti autorizzati

Descrizione: This is the Editor's (Academic Press) printed version
Licenza: Copyright dell'editore
Dimensione 303.54 kB
Formato Adobe PDF
303.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with all bibliographical metadata of the present article
Licenza: Non specificato
Dimensione 126.29 kB
Formato Adobe PDF
126.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with all bibliographical metadata of the present article
Licenza: Non specificato
Dimensione 105.74 kB
Formato Adobe PDF
105.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/19085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact