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Abstract. Let G be either Sp(V ) or O(V ). Using an action of the Brauer

algebra, we describe the subspace Tk
(
V ⊗m

)
⊆ V ⊗m of tensors of valence

k as an induced representation. As an application, we recover a special case
of Littlewood’s restriction rule, affording the decomposition of an irreducible

GL(V )–module when restricted to G. Moreover we get an explicit realization
of the irreducible representations of the Brauer algebra.

§1 Introduction.

Let V be a complex vector space of dimension 2n, endowed with a sym-
plectic (i.e. non-degenerate bilinear skew-symmetric) form ⟨ , ⟩. Consider
the symplectic group Sp(V ) of linear automorphisms of V preserving the
symplectic form ⟨ , ⟩. It is well known that all irreducible finite dimen-
sional representations of Sp(V ) can be realized as subrepresentations of ten-
sor powers V ⊗m (m ∈ N); on the other hand, consider the centralizer of
the Sp(V )–action on V ⊗m, which is a quotient of the so-called Brauer al-
gebra B−2n

m : Schur duality tells us that the algebra of operators generated
by Sp(V ) and the above quotient of the Brauer algebra are mutual central-
izer, and establishes a bijective correspondence between the representations
of either of these algebras.

The Sp(V )–module V ⊗m splits as V ⊗m =
⊕[m2 ]

k=0 T
k (V ⊗m) , the subspace

T k (V ⊗m) being the sum of the Sp(V )–isotypic components of V ⊗m which
appear for the first time in tensor power m − 2k; more directly, if Ψpq :

V ⊗m −→ V ⊗(m+2) is the extension operator which inserts in the positions
p, q the canonical element of the skew-form ⟨ , ⟩, T k (V ⊗m) is the vector
space generated by k–fold extensions of the traceless tensors in V ⊗(m−2k) (i.e.
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2 REPRESENTATIONS OF THE BRAUER ALGEBRA

tensors killed by any contraction). Note that, if Sm denotes the symmetric
group on m letters, T k (V ⊗m) has a natural structure of Sp(V )×Sm–module
(even more, of Sp(V )× B−2n

m –module).
In this paper we show (Theorem 4.1) that, for n ≥ m (i.e. in the ”stable

case”), T k (V ⊗m) is obtained by inducing the Sm–module structure from a
representation of Sm−2k×S2k built up by taking the tensor product of trace-
less tensors in V ⊗(m−2k) and Sp(V )–invariants in V ⊗(2k). This is proved by
considering two actions of the Brauer algebra: the natural action of B−2n

m

on T k (V ⊗m) and an action on the induced representation, which we di-
rectly define in §3; relating and comparing these actions we will be able to
show that B−2n

m is the whole centralizer of the Sp(V )–action on the induced
representation: this fact — whose proof is reduced to a combinatorial calcu-
lation — allows us to apply symplectic Schur duality and to get the desired
isomorphism using elementary representation theory.

A first application is a proof of Littlewood’s restriction rule in the stable
case. Namely, let Vλ be an irreducible finite dimensional polynomial GL(V )–
module indexed by a partition λ of m; its restriction to Sp(V ) is no longer
irreducible in general: in [L] Littlewood furnished a formula describing the
decomposition of Vλ into irreducible Sp(V )–modules under the assumption
that λ has at most n parts; note that this condition is always satisfied in the
stable case. Using the description of T k (V ⊗m) we gave, it is not difficult
to recover Littlewood’s rule using standard techniques of classical invariant
theory (cf. §5).

The previous arguments can be repeated almost word-by-word for the
orthogonal group; in §6 we point out the few modifications needed.

Finally, in §7, we recover from our main result an explicit realization,
inside V ⊗m, of the irreducible representations of the Brauer algebra in the
stable case, and describe the relation among our results and the combinatorial
description of these representations (due to Kerov [K]).

In §2 we introduce the basic definitions and recollect well-known results
of representation theory which will be needed in the sequel; almost all the
results of this section can be found in Weyl’s fundamental book [W].

We adopt the following notational conventions: if λ = (λ1 ≥ . . . ≥ λk ≥
0) is a partition of m, (i.e. m =

∑k
i=1 λi ≡ |λ|) we will write λ ⊢ m.

Moreover we define the depth of λ as:

l(λ) := number of non-zero parts in λ.

In the following we will freely use the following canonical isomorphisms:

(1) φ : V
∼=−→ V ∗, φ(v)(w) = ⟨v, w⟩, v, w ∈ V .

(2) α : V ∗ ⊗ V
∼=−→ End(V ), α(ϕ⊗ w)(v) = ϕ(v)w, v, w ∈ V,Φ ∈ V ∗.

(3) V ⊗ V
φ⊗Id−−−→ V ∗ ⊗ V

α−→ End(V ).
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(4) V ⊗ V
φ⊗φ−−−→ V ∗ ⊗ V ∗ ∼=−→ (V ⊗ V )

∗
.

For V a symplectic vector space of dimension 2n, we fix a basis {e1, . . . , en,
f1, . . . , fn} such that ⟨ei, ej⟩ = ⟨fi, fj⟩ = 0, ⟨ei, fj⟩ = δij and we consider
the element ψ =

∑n
i=1(ei ⊗ fi − fi ⊗ ei) ∈ V ⊗V . It is easy to show that the

image of ψ is IdV under the identification (3) and the skew-form ⟨ , ⟩ under
the identification (4); in particular, ψ does not depend on the choice of the
basis, hence it will be referred to as the canonical element for the form ⟨ , ⟩.

In the orthogonal case, we denote by ( , ) the bilinear symmetric non-
degenerate form; if {e1, . . . , en} is an orthonormal basis, then the canonical
element is ψ =

∑n
i=1 ei ⊗ ei ∈ V ⊗ V .

§2 Symplectic invariants and Schur duality.

In this section we recall the first and second fundamental theorems of
invariant theory for the symplectic group and then we recollect some related
results which will be needed in the sequel.

Let P(V ⊕m) denote the space of polynomial functions of m vector vari-
ables, each of dimension 2n.

Theorem 2.1. ([D-P], Th. 6.7)

(1) (
P
(
V ⊕m

))Sp(V )
= C[⟨vi, vj⟩].

(2) The ideal of relations between the generators ⟨vi, vj⟩ is generated
by the Pfaffians of order 2n + 2 of the m × m skew-symmetric
matrix

(
⟨vi, vj⟩

)
i,j=1,...,m

.

Since we are working in characteristic 0, we can reduce to consider
multilinear invariants, that is (having identified V with V ∗) elements of(
V ⊗2m

)Sp(V )
. Such elements can be encoded as follows. Consider the poly-

nomial ring

A = C[xij ]2mi,j=1,i ̸=j

/
(xij = −xji)

in m(2m− 1) skew-symmetric variables.

Definition. The space Am of multilinear elements in A is the linear span
over C of monomials of degree m

xi1 j1 . . . xim jm

where (i1, j1, . . . , im, jm) is a permutation of {1, 2, . . . , 2m}.

In other words, in each multilinear monomial all indexes appear and they
appear exactly once.
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It is clear that Am is a representation of S2m. Every multilinear monomial
is up to sign in the orbit of m0 := x1m+1x2m+2 . . . xm 2m; the S2m stabilizer
of the line through m0 is the hyperoctahedral group Km := Sm n (Z/2Z)m,
which induces on this line the sign representation. We can therefore deduce
the first assertion in the following statement (see [L-P], Prop. 3.3).

Proposition 2.2. The representation of S2m on Am is induced by the sign
representation of Km. Moreover, as S2m–modules,⊕

σ⊢2m
σ has even columns

Mσ
∼= Am,

Mσ being the irreducible representation of S2m associated to the partition σ.

The fundamental theorems can be restated as follows:

Theorem 2.3. ([L-P], Th. 3.8) The map of S2m–modules

α : Am −→
(
(V ⊗2m)∗

)Sp(V )

defined by extending linearly α(xi1j1 . . . ximjm) = ηi1j1...imjm where

ηi1j1...imjm(v1 ⊗ v2 ⊗ . . .⊗ v2m) :=
m∏

k=1

⟨vik , vjk⟩

is a surjective homomorphism of S2m–modules. Its kernel is the intersection
of Am with the ideal Pf(2n+2) of A generated by the Pfaffians of order 2n+2
of the skew-symmetric matrix (xij) and it corresponds, in the isomorphism
of the Proposition 2.2, to the S2m–submodule⊕

σ⊢2m
l(σ)>2n

σ has even columns

Mσ

Remark. Let σ = (i1, j1, i2, j2, . . . , im, jm) ∈ S2m ; then set

m∏
k=1

ψikjk := σ.(ψ⊗m) ∈ (V ⊗(2m))Sp(V ).

It is easy to verify that under the canonical isomorphism
(
V ⊗2m

)∗ ∼=
V ⊗2m described in §1, ηi1j1...imjm maps to

∏m
k=1 ψikjk . In particular any

invariant in V ⊗2m is a linear combination of elements
∏m

k=1 ψikjk .
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We will need the first fundamental theorem for the linear group too; it
will be stated in two forms equivalent to the standard polynomial version:
Schur duality and the mutual commutant theorem.

It is well-known that finite-dimensional representations of GL(V ) are com-
pletely reducible and irreducible (polynomial) representations are indexed
by highest weights ω or equivalently by partitions λ with l(λ) ≤ dim(V ).
Let Vλ be the irreducible representation of GL(V ) relative to the parti-
tion λ, (l(λ) ≤ 2n) and let Mσ denote the irreducible representation of
Sm, (m = |σ|) relative to the partition σ.

Consider now V ⊗m; there is a standard tensor product action of GL(V )
on it and also a natural action of Sm given on decomposable tensors by
permutation of the factors:

π(v1 ⊗ . . .⊗ vm) = vπ−1(1) ⊗ . . .⊗ vπ−1(m).

Theorem 2.4 (Schur Duality). Let V be an n–dimensional complex vector
space. For m ∈ N, V ⊗m is a GL(V )×Sm–module whose decomposition into
irreducibles is:

V ⊗m ∼=
⊕
λ⊢m

l(λ)≤n

Vλ ⊗Mλ.

Theorem 2.5. The algebras spanned by the images of GL(V ) and of Sm,
each acting on V ⊗mas described above, are mutual centralizers in End(V ⊗m).

The situation is no longer the same if we consider the action on V ⊗m

of Sp(V ); in this case the centralizer of the Sp(V )–action properly contains
the group algebra of the symmetric group: it is easy to see that also the
operatorsτpq introduced in the next definition commute with the Sp(V )–
action.

Definitions. Fix m ∈ N; for each pair p, q of integers between 1 and m we
define

(1) a contraction operator Φpq : V ⊗m −→ V ⊗(m−2) (for p < q, say),

Φpq(v1 ⊗ . . .⊗ vm) = ⟨vp, vq⟩ v1 ⊗ . . . v̂p ⊗ . . .⊗ v̂q ⊗ . . .⊗ vm

(2) an insertion operator Ψpq : V ⊗m −→ V ⊗(m+2), obtained inserting
the element ψ in the positions p, q;

(3) an operator τpq : V ⊗m −→ V ⊗m defined by τpq := ΨpqΦpq.

The same definition can be given in the orthogonal case, with the symmetric
form ( , ) in place of ⟨ , ⟩.
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Definition. We call Brauer algebra B−2n
m of Sp(V ) the associative C–alge-

bra with 1 defined by generators σ in bijection with elements of Sm and τpq
(p, q = 1, . . . ,m) and relations (assume all the index sets disjoint)

τpq = τqp στpqσ
−1 = τσ(p)σ(q) τpqτhk = τhkτpq

τpqτqr = τpq (p r) τ2pq = 2nτpq τpq = −τpq (p q)

as well as all relations of the symmetric group Sm among the σ’s.
For the case of the orthogonal group we introduce similarly a Brauer alge-

bra, with the same presentation except for the last two relations, which are
replaced by the following ones:

τ2pq = nτpq τpq = τpq (p q)

Finally, we call ”Brauer algebra with formal parameter” Bx
m the associa-

tive C(x)–algebra with 1 defined by generators σ in bijection with elements
of Sm and Tpq (p, q = 1, . . . ,m, p ̸= q) and relations (assume all the index
sets disjoint)

Tpq = Tqp σTpqσ
−1 = Tσ(p)σ(q) TpqThk = ThkTpq

TpqTqr = Tpq (p r) T 2
pq = xTpq Tpq = Tpq (p q)

as well as all relations of the symmetric group Sm among the σ’s.
The same presentation with N ∈ C instead of x defines the C–algebra BN

m .

Remark. There exist C–algebra isomorphisms

∆−: B−2n
m

∼=−→B−2n
m (Sp(2n)) , ∆+: Bn

m

∼=−→Bn
m(O(n))

given by

∆−: Tpq 7→ −τpq , σ 7→ sgn(σ)σ , ∆+: Tpq 7→ τpq , σ 7→ σ

Theorem 2.6. [Br] The natural map ρ:B−2n
m → EndSp(V ) (V

⊗m)is surjec-
tive; if n ≥ m, then ρ is an isomorphism.

Definition. The space

T 0(V ⊗m) :=
∩
p<q

KerΦpq

is called the space of traceless tensors. More generally set, for k = 0, . . . , [m2 ]:

T k(V ⊗m) :=
∑

i1<j1,... ,ik<jk

Ψi1j1 . . .Ψikjk

(
T 0(V ⊗(m−2k))

)
.

The same definition can be given for the orthogonal case.

Remark. Weyl calls the elements of T k(V ⊗m) tensors of valence k, since
they become traceless (”of valence 0”) after k (but not less) contractions.
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Lemma 2.7.

V ⊗m =

[m2 ]⊕
k=0

T k(V ⊗m)

The space of traceless tensors plays a fundamental role in the construction
of irreducible Sp(V )–modules; more precisely:

Proposition 2.8. Let V be a 2n–dimensional complex vector space, and
let Vλ be the irreducible representation of GL(V ) indexed by the partition
λ, (l(λ) ≤ 2n), with |λ| = d. Fix a Young symmetrizer eλ ∈ C[Sd], so that
eλ.V

⊗d ∼= Vλ . Then
Wλ := eλ.V

⊗d ∩ T 0(V ⊗d)

is nonzero if and only if l(λ) ≤ n. In this case, Wλ is the irreducible repre-
sentation of Sp(V ) of highest weight1

∑n
i=1 λiεi.

When acting on traceless tensors, the operators τpq vanish, so the central-
izer of the action of the symplectic group is exactly the group algebra of the
symmetric group. We can therefore deduce the following fact.

Proposition 2.9. The following decomposition of T 0(V ⊗m) into isotypic
components with respect to the action of Sp(V )× Sm holds:

T 0(V ⊗m) ∼=
⊕
µ⊢m

l(µ)≤n

Wµ ⊗Mµ.

Moreover the following theorem holds:

Theorem 2.10. ([D-S] Theorem 3.5) The natural map

C[Sm] → EndSp(V )

(
T 0(V ⊗m)

)
is surjective.
Its kernel is the ideal generated by the antisymmetrizer

∑
σ∈Sn+1

(−1)sgn σσ

on n+ 1 elements, which is ⊕
λ⊢m

l(λ)>n

Iλ

Iλ being the minimal two-sided ideal in C[Sm] associated to the partition λ
(i.e. Iλ = C[Sm]eλC[Sm], where eλ is a Young symmetrizer associated to λ).

1{ε1, . . . , εn} is the standard basis in Rn.
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§3 A B−2n
m –action on IndSm

Sm−2k×S2k

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
.

In this section we define an action of the Brauer algebra B−2n
m on the space

IndSm

Sm−2k×S2k

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
: besides being interesting on

its own — as it will be explained in §7 — this will allow us to prove, in the
stable, case our main result, namely

IndSm

Sm−2k×S2k

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
∼= T k

(
V ⊗m

)
.

Set Hk := Sm−2k × S2k , Uk := T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
. Since

IndSm

Hk
(Uk) has a natural structure of Sm–module, we need only to define an

action of the elements τpq compatible with such an action of Sm ; we will first

define auxiliary operators tpq acting on Uk with values in IndSm

Hk
(Uk), then

we will extend their definition to the whole induced representation. Finally
we will check that these extended operators τpq satisfy the defining relations
of the Brauer algebra.

Set A := {1, . . . ,m − 2k}, B := {m − 2k + 1, . . . ,m}. We remark that
the natural B−2n

m –action on V ⊗m restricts to T k (V ⊗m), affording a repre-
sentation ρk of B−2n

m ; so we are led to give the following definition.

Definition. Define a map tpq : Uk → C[Sm] ⊗C[Hk] Uk, p, q ∈ {1, . . . ,m},
p < q, as follows.
(1) For p, q ∈ A set

tpq(u) = 0 ∀u ∈ Uk.

(2) For p, q ∈ B set

tpq(u)=

 2n(1⊗C[Hk] u), if u = x⊗ ψpq

(∏k−1
s=1 ψisjs

)
, x ∈ T 0

(
V ⊗(m−2k)

)
(pr)⊗C[Hk] u, if u = x⊗ ψptψqr

(∏k−2
s=1 ψasbs

)
, x ∈ T 0

(
V ⊗(m−2k)

)
where {i1, j1, . . . , ik−1, jk−1} is a permutation of B \ {p, q} in the first case
and {a1, b1, . . . , ak−2, bk−2} is a permutation of B \ {p, q, t, r} in the second
one.
(3) For p ∈ A, q ∈ B set

tpq(u) = (pr)⊗C[Hk] u, if u = x⊗ ψqr

(
k−1∏
s=1

ψusvs

)
, x ∈ T 0

(
V ⊗(m−2k)

)
where {u1, v1, . . . , uk−1, vk−1} is a permutation of B \ {r, q}.
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Remarks.

(1) In cases (2) and (3) we have defined tpq only on a set of special el-
ements of Uk; by the remark after Theorem 2.3 these elements are
linear generators for (V ⊗(2k))Sp(V ); this suffices to determine tpq com-
pletely since the action just defined is induced by ρk, so in particular
tij(Pf(2n+2)) = 0 ∀ i, j.

(2) To simplify notation, in the following we will denote an element u =

x⊗ψpq

(∏k−1
s=1 ψisjs

)
as u = x⊗ψpqR writing down only the relevant

indexes.
(3) Notice that the symbols ψij are skew-symmetric; so the following

useful identity in the lower subcase of (2) holds:

(pr)⊗C[Hk] u = (qt)⊗C[Hk] x⊗ ψtpψrqR = (qt)⊗C[Hk] x⊗ (qt)(pr)ψptψqrR

= (qt)(pr)(pr)⊗C[Hk] u = (qt)⊗C[Hk] u.

(4) If we set formally tqp := tpq for p ∈ A, q ∈ B we may extend the
definition of the operators to any pair of indexes; moreover it follows
immediately from the definitions and from the previous remark that
tij = tij if both the indexes are in A or in B, so for any pair of indexes
in {1, . . . ,m} the relation tij = tji holds.

Lemma 3.1. htij = th(i)h(j)h ∀h ∈ Hk.

Proof. If i, j ∈ A, then htij ≡ 0; on the other hand Hk preserves A so
h(i), h(j) ∈ A and th(i)h(j) = th(i)h(j)h = 0.

Suppose i, j ∈ B; in the first case we have

htij(u) = 2n(h(u)) = th(i)h(j)h(u)

since h(u) = h(x)⊗ψh(i)h(j)h(R); for the other case suppose u = x⊗ψipψjqR;
we have

htij(u) = h(pj)u = (h(p)h(j))hu = th(i)h(j)h(u).

Finally suppose i ∈ A, j ∈ B; if u = x⊗ ψjrR

htij(u) = h(ir)u = h(ir)h−1h(u) = (h(i)h(r))h(u) = th(i)h(j)h(u). �

Definition. Define τij : C[Sm]⊗C[Hk]Uk → C[Sm]⊗C[Hk]Uk by the formula

τij(g ⊗ u) := gtg−1(i)g−1(j)(u).

By the previous lemma, τij is well-defined.
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Lemma 3.2. For any σ ∈ Sm we have στijσ
−1 = τσ(i)σ(j).

Proof. Just compute:

στijσ
−1(g ⊗ u) = στij(σ

−1g ⊗ u) = σ(σ−1gtg−1σ(i)g−1σ(j)(u)) =

= gtg−1σ(i)g−1σ(j)(u) = τσ(i)σ(j)(g ⊗ u) �

Theorem 3.3. The operators σ ∈ Sm and τij define a representation ρk of

B−2n
m on IndSm

Hk
(Uk).

Proof. By the previous lemma and remark (4), we need only to verify the
last four defining relations. We will work out explicitly the proof only for
the first relation; the other ones can be treated similarly.

Consider the relation τ2ij = 2n τij ; evaluating both sides on g ⊗ u we are
immediately reduced to prove the following identity on Uk:

τijtij = 2n tij .

We have to examine three cases, according whether i, j ∈ A, i, j ∈ B or
i ∈ A, j ∈ B. The first case is trivial, so let us consider the second one; we
have two subcases: if u is an eigenvector for tij then the relation is immediate;
otherwise, assume u = x⊗ ψipψjqR; we have

τijtij(u) = τij(pj)u = (pj)tip(u) = 2n (pj)u = 2n tij(u).

Finally suppose i ∈ A, j ∈ B and u = x⊗ ψjrR:

τijtij(u) = τij(ir)u = (ir)tjr(u) = 2n(ir)u = 2n tij(u). �

Proposition 3.4. Let k ∈ {0, 1, . . . , [m2 ]}. The map

Θk : IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
−→ T k

(
V ⊗m

)
given, for all α ∈ Sm, a ∈ T 0

(
V ⊗(m−2k)

)
, b ∈

(
V ⊗(2k)

)Sp(V )
, by

Θk

(
α⊗C[Hk] (a⊗ b)

)
= α(a⊗ b)

is a morphism of Sp(V )× Sm–modules.
Moreover, Θk is an epimorphism of Sp(V )× B−2n

m –modules.

Proof. By the very definition, it is clear that the map Θk is a well-defined
Sp(V )× Sm–module homomorphism.
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Consider the subspace Zk ⊂ T k (V ⊗m) defined by

Zk := Ψm−1m . . .Ψm−2k+1m−2k

(
T 0
(
V ⊗(m−2k)

))
= {v ⊗ ψ⊗k | v ∈ T 0

(
V ⊗(m−2k)

)
};

then Zk generates T k (V ⊗m) as an Sm–module; moreover we have
ψ⊗k ∈ (V ⊗(2k))Sp(V ) , hence Zk can be canonically identified with a subspace

of Uk and, in turn, with a subspace Z̃k of IndSm

Hk
(Uk). By Sm–equivariance

of Θk we get

Θk(Sm.Z̃k) = Sm.Θk(Z̃k) = Sm.Zk = T k
(
V ⊗m

)
so that Θk is onto. Finally, the very definition of the B−2n

m –actions on both
sides immediately implies that Θk is B−2n

m –equivariant too. �

Remark. Due to the reductivity of Sp(V ), the equivariant epimorphism

Θk : IndSm

Hk
(Uk) −→ T k (V ⊗m) induces an epimorphism

End′Sp(V )

(
IndSm

Hk
(Uk)

)
−→ EndSp(V )

(
T k
(
V ⊗m

))
,

where End′Sp(V )

(
IndSm

Hk
(Uk)

)
is the subalgebra of EndSp(V )

(
IndSm

Hk
(Uk)

)
stabilizing the kernel of Θk. In particular:

dim
(
End′Sp(V )

(
IndSm

Hk
(Uk)

))
≥ dim

(
EndSp(V )

(
T k(V ⊗m)

))
.

The following is standard.

Lemma 3.5. Let G be a group, H a subgroup of G and M a finite dimen-
sional G–module. Then there exists a G ×G–equivariant canonical isomor-
phism of G×G–modules:

End
(
IndGH(M)

) ∼= IndG×G
H×H (End(M)).

Corollary. As Sm × Sm–modules

EndSp(V )

(
IndSm

Hk
(Uk)

)
∼= IndSm×Sm

Hk×Hk

 C[Sm−2k]⊕
λ⊢(m−2k)
l(λ)>n

Iλ
⊗ End

(
Ak

Pf(2n+2)

).
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Proof. The claim follows from the following chain of Sm×Sm–isomorphisms:

EndSp(V )

(
IndSm

Hk
(Uk)

)
=
(
End

(
IndSm

Hk
(Uk)

))Sp(V )

=

=

(
IndSm×Sm

Hk×Hk
End

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗(2k)

)Sp(V )
))Sp(V )

=

= IndSm×Sm

Hk×Hk

(
End

(
T 0
(
V ⊗(m−2k)

))
⊗ End

((
V ⊗(2k)

)Sp(V )
))Sp(V )

=

= IndSm×Sm

Hk×Hk

(
EndSp(V )

(
T 0
(
V ⊗(m−2k)

))
⊗ End

((
V ⊗(2k)

)Sp(V )
))

=

= IndSm×Sm

Hk×Hk

 C[Sm−2k]⊕
λ⊢(m−2k)
l(λ)>n

Iλ
⊗ End

(
Ak

Pf(2n+2)

) .

The second equality follows from the previous lemma, the third from the
fact that taking invariants commutes with induction, the fourth from the

fact that the Sp(V ) action is trivial on End
((
V ⊗(2k)

)Sp(V )
)

and the last

from Theorems 2.3, 2.10. �

Now we can prove the following key fact.

Proposition 3.6. If n ≥ m, then the centralizer of the Sp(V )–action on

IndSm

Hk
(Uk) is ρk(B−2n

m ).

Proof. Since ρk(B−2n
m ) ⊆ EndSp(V )

(
IndSm

Hk
(Uk)

)
we can prove equality by

comparing dimensions. First recall that dimB−2n
m = (2m− 1)!! (cf. [Wz] or



FABIO GAVARINI PAOLO PAPI 13

§7 below); then

(2m− 1)!! = dim
(
B−2n
m

)
= dim

(
ρ
(
B−2n
m

))
= dim

(
EndSp(V )

(
V ⊗m

))
=

= dim

EndSp(V )

[m/2]⊕
k=0

T k(V ⊗m)

 =

=

[m/2]∑
k=0

dim
(
EndSp(V )

(
T k
(
V ⊗m

)))
≤

≤
[m/2]∑
k=0

dim
(
End′Sp(V )

(
IndSm

Hk
(Uk)

))
≤

≤
[m/2]∑
k=0

dim
(
EndSp(V )

(
IndSm

Hk
(Uk)

))
=

=

[m/2]∑
k=0

dim
(
IndSm×Sm

Hk×Hk

(
EndSp(V )(Uk)

))
=

=

[m/2]∑
k=0

(
m!

(m− 2k)!(2k)!

)2

(m− 2k)! (2k − 1)!!
2
;

in fact, since n ≥ m, ρ is faithful, whence the second equality, and the
previous Corollary gives EndSp(V )(Uk) = C[Sm−2k]⊗End(Ak); we also used
the remark after Proposition 3.4. In Lemma 3.7 below we prove that

[m/2]∑
k=0

(
m!

(m− 2k)!(2k)!

)2

(m− 2k)! (2k − 1)!!
2
= (2m− 1)!!

so we can deduce that

EndSp(V )

(
IndSm

Hk
(Uk)

)
= End′Sp(V )

(
IndSm

Hk
(Uk)

)
= EndSp(V )

(
T k
(
V ⊗m

))
.

Since ρk is surjective and the following diagram commutes

B−2n
m B−2n

m

ρk

y yρk

EndSp(V )

(
IndSm

Hk
(Uk)

) ∼=−−−−→ EndSp(V )

(
T k (V ⊗m)

)
the proof is completed. �
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Lemma 3.7.

[m/2]∑
k=0

(
m!

(m− 2k)!(2k)!

)2

(m− 2k)! (2k − 1)!!
2
= (2m− 1)!!.

Proof. Consider 2m elements partitioned into two setsA andB ofm elements
each. It is well-known that the number of pairings between elements of A∪B
is (2m− 1)!!; we want to show that the previous formula expresses a way of
counting such pairings. We may select a pairing in A∪B giving the following
data:

(1) m− 2k elements in A;
(2) m− 2k elements in B;
(3) a pairing between the m− 2k elements selected in A and the m− 2k

elements selected in B;
(4) a pairing of the remaining 2k elements in A;
(5) a pairing of the remaining 2k elements in B.

The reader will easily convince himself that when k runs from 0 to [m/2]
the procedure above displays all possible pairings of A ∪ B without repeti-
tions. Now we have only to count the possible choices for a fixed configura-
tion and to sum over k from 0 to [m/2]: there is a contribution

(
m

m−2k

)2
for

(1),(2), a contribution (m−2k)! for (3) and finally a contribution (2k − 1)!!
2

for (4), (5) so our claim follows. �

§4 The isomorphism T k (V ⊗m) ∼= IndSm

Hk
(Uk) (stable case).

In Proposition 3.4 we showed the existence of an Sp(V ) × B−2n
m –epimor-

phism Θk : IndSm

Hk
(Uk) −→ T k (V ⊗m) ; in this section we will prove —

using the constructions and results of §3 — that in the stable case Θk is an
isomorphism: this is done by comparing the B−2n

m –actions on both sides.

Theorem 4.1. Let n ≥ m . Then

Θk : IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
−→ T k

(
V ⊗m

)
is an isomorphism of Sp(V )× B−2n

m –modules.

Proof. From §3, we have actions ρk, ρk of B−2n
m on IndSm

Hk
(Uk), T

k (V ⊗m)

respectively, so we can decompose both IndSm

Hk
(Uk) and T

k (V ⊗m) into iso-

typic component with respect to Sp(V )× B−2n
m ; furthermore, the (image of

the) Brauer algebra is the whole Sp(V )–centralizer for these actions, hence
by the double centralizer theorem these decompositions are multiplicity free,
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i.e. of the form
⊕

µWµ ⊗Nµ , Nµ being an irreducible B−2n
m –module. Now

remark that the irreducible representations of Sp(V ) occurring in the two
decompositions are the same. Moreover Θk is equivariant, thus it maps
isotypic components into isotypic components. By Schur lemma we have
Θk(Wµ ⊗Nµ) = 0 or Θk(Wµ ⊗Nµ) =Wµ ⊗Nµ : since Wµ ⊗Nµ does occur
in T k (V ⊗m) = Im(Θk) , the map Θk must be injective, whence the thesis
follows. �

§5 Littlewood’s restriction rule.

As a corollary of Theorem 4.1 we get a representation-theoretic proof
of Littlewood’s restriction rule (Littlewood, [L]), in the following slightly
weaker version (Littelwood makes the assumption λ ⊢ m, l(λ) ≤ n, which is
a weaker condition than n ≥ m, because l(λ) ≤ m for all λ ⊢ m):

Proposition 5.1. If n ≥ m and λ ⊢ m , then

Vλ ↓GL(V )
Sp(V )

∼=
⊕
µ

 ∑
σ⊢(|λ|−|µ|)

σ has even columns

cλµ,σ

Wµ

where cλµ,σ is the Littlewood-Richardson coefficient expressing the multiplicity

of Mλ in the decomposition into irreducibles of Ind
S|λ|
S|µ|×S|σ|

(Mµ ⊗Mσ).

Proof. We will compute the ”branching rules” of T k(V ⊗m) and IndSm

Hk
(Uk).

By Propositions 2.2 and 2.9 and Theorem 2.3 (with n ≥ m) we have

IndSm

Hk
(Uk) = IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗(2k)

)Sp(V )
)

∼=

∼=
⊕

µ⊢(m−2k)

⊕
σ⊢2k

σ has even columns

IndSm

Hk
(Wµ ⊗Mµ ⊗Mσ) ∼=

∼=
⊕

µ⊢(m−2k)

⊕
σ⊢2k

σ has even columns

Wµ ⊗ IndSm

Hk
(Mµ ⊗Mσ) ∼=

∼=
⊕

µ⊢(m−2k)

⊕
λ⊢m

 ∑
σ⊢2k

σ has even columns

cλµ,σ

Wµ ⊗Mλ.
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Since n ≥ m, Theorem 4.1 and the previous computation give:

T k
(
V ⊗m

) ∼= IndSm

Hk
(Uk) ∼=

⊕
µ⊢(m−2k)

⊕
λ⊢m

 ∑
σ⊢2k

σ has even columns

cλµ,σ

Wµ ⊗Mλ.

Now remark that, as GL(V )× Sm–modules,

[m2 ]⊕
k=0

T k
(
V ⊗m

)
= V ⊗m ∼=

⊕
λ⊢m

l(λ)≤2n

Vλ ⊗Mλ =
⊕
λ⊢m

Vλ ⊗Mλ.

Restrict Vλ to the symplectic group; then Vλ ↓GL(V )
Sp(V )

∼= ⊕µn
λ
µWµ for some

coefficients nλµ; thanks to Theorem 2.2 the part relative to T k of the previous

decomposition of V ⊗m can be expressed as follows:

T k
(
V ⊗m

) ∼= ⊕
µ⊢(m−2k)

⊕
λ⊢m

nλµWµ ⊗Mλ.

Comparing the decompositions gives the thesis, for⊕
λ⊢m

Vλ ↓GL(V )
Sp(V ) ⊗Mλ

∼=
⊕

µ⊢(m−2k)

⊕
λ⊢m

nλµWµ ⊗Mλ
∼=

∼=
⊕

µ⊢(m−2k)

⊕
λ⊢m

 ∑
σ⊢2k

σ has even columns

cλµ,σ

Wµ ⊗Mλ. �

§6 The orthogonal case.

Let now V be an n–dimensional complex vector vector space endowed with
a symmetric non-degenerate bilinear form ( , ). We can adapt the previous
results to the case of O(V ), pointing out some few changes to be made.

Invariants on V ⊕m are generated by scalar products (vi, vj) and the ideal
M(n+1) of relations among them is generated by minors of order n+1 of the

m×m matrix
(
(vi, vj)

)
i,j=1,... ,m

; so we can encode invariants as elements of

the polynomial ring B = C[xij ]2mi,j=1,i̸=j

/
(xij = xji) inm(2m+1) symmetric

variables, and multilinear invariants Bm as linear combination of monomials
xi1j1 . . . ximjm where (i1, j1, . . . , im, jm) is a permutation of {1, 2, . . . , 2m}.
We have the following description of the S2m–module structure on Bm.
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Proposition 6.1. The representation of S2m on Bm is induced by the trivial
representation of Sm. Moreover, as S2m–module,⊕

σ⊢2m
σ has even rows

Mσ
∼= Bm.

When dealing with traceless tensors, Proposition 2.9 and Theorem 2.10
can be formulated as follows. Let Dλ the irreducible representation of O(V )
corresponding the partition λ of m, and denote by µt = (µt

1, µ
t
2, . . . ) the

transposed partition of µ = (µ1, µ2, . . . ).

Proposition 6.2. The following decomposition of T 0(V ⊗m) into isotypic
components with respect to the action of O(V )× Sm holds:

T 0(V ⊗m) =
⊕
µ⊢m

µt
1+µt

2≤n

Dµ ⊗Mµ.

Theorem 6.3. The natural map C[Sm] → EndO(V )

(
T 0(V ⊗m)

)
is surjec-

tive; its kernel is the ideal generated by all the Young symmetrizers relative
to diagrams with the first two columns adding to a number ≥ n+ 1, i.e.⊕

λ⊢m
λt
1+λt

2>n

Iλ.

Now the arguments used in the symplectic case work again, mutatis mu-
tandis, in the orthogonal case as well: in particular, there exists an ac-
tion of the Brauer algebra (of the orthogonal group) on IndSm

Hk
(Uk), with

Uk := T 0
(
V ⊗(m−2k)

)
⊗
(
V 2k

)O(V )
, defined as in §3. Then everything goes

through in a similar fashion, up to the obvious changes: for instance the
statement of the corollary to Lemma 3.5 in the orthogonal case turns into
the following:

EndO(V )

(
IndSm

Hk
(Uk)

)
∼= IndSm×Sm

Hk×Hk

 C[Sm−2k]⊕
λ⊢(m−2k)

λt
1+λt

2>n

Iλ
⊗ End

(
Bk

M(n+1)

).
In particular in the stable case, i.e. for n ≥ m , we have the analog of

Theorem 4.1, namely
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There exists an isomorphism of O(V )× B−2n
m –modules

Θk : IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)O(V )
)
−→ T k

(
V ⊗m

)
and Littlewood’s restriction rule as its corollary, that is

Vλ ↓GL(V )
O(V )

∼=
⊕
µ

 ∑
σ⊢(|λ|−|µ|)

σ has even rows

cλµ,σ

Dµ .

§7 The irreducible B−2n
m –modules (stable case).

By general theory, in the stable case all irreducible representations of
B−2n
m can be realized in tensor spaces V ⊗m; in this section we show that

from our main result we can also deduce a complete description of such
representations: in fact we produce an explicit realization of the irreducible
representations which are described by Kerov (cf. [K]) for the Brauer algebra
with formal parameter; in particular, all results therein stated are here proved
from a representation-theoretic viewpoint.

Consider the space IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
: this is a

Sp(V ) × B−2n
m –module. Since T 0

(
V ⊗(m−2k)

) ∼=
⊕

µ⊢(m−2k)
l(µ)≤n

Wµ ⊗Mµ as

a module over Sp(V )×Sm−2k, and Sm centralizes Sp(V ), the previous mod-
ule splits into direct sum of Sp(V )× Sm–modules as follows

IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
∼=

∼=
⊕

µ⊢(m−2k)
l(µ)≤n

Wµ ⊗ IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
;

moreover, as B−2n
m centralizes Sp(V ), the spaces IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)

are in fact B−2n
m –modules: the action of B−2n

m is properly described as in §3.
Now assume we are in the stable case: then Sp(V ) and B−2n

m are mutual

centralizer (Proposition 3.6) and IndSm

Hk

(
T 0
(
V ⊗(m−2k)

)
⊗
(
V ⊗2k

)Sp(V )
)
∼=

T k (V ⊗m) , hence from V ⊗m ∼=
⊕[m/2]

k=0 T k (V ⊗m) we get

V ⊗m =

[m/2]⊕
k=0

⊕
µ⊢(m−2k)

Wµ ⊗ IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
;
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then, by the double centralizer theorem, the IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
’s

are irreducible modules; moreover, the representation of B−2n
m on V ⊗m is

faithful, hence the IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
’s (µ ⊢ (m − 2k), k ∈ {0, 1,

. . . , [m/2]}) are all of the irreducible representations of B−2n
m . The same

situation occurs when dealing with the orthogonal group (and the associated
Brauer algebra) instead of the symplectic group.

To describe IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
, note that, in the stable case,(

V ⊗2k
)Sp(V )

has a basis of antisymmetric ”monomials”
∏k

h=1 ψihjh : using

this basis one recognizes that
(
V ⊗2k

)Sp(V )
is IndS2k

S2
×k

(
Σ2

⊗k
)

(as an S2k–

module), where Σ2 is the sign representation of S2. The orthogonal case is
slightly simpler, for the trivial representation T2 of S2 occurs in place of Σ2.

Now we recall an alternative (mostly used, indeed) description of the
algebra Bx

m (cf. for instance [Wz], §2). Consider graphs with 2m vertices
and m edges such that each edge joins exactly two vertices and each vertex
belongs to exactly one edge; represent the vertices with spots arranged in two
lines, one upon the other: the picture below shows an example for m = 5.

We call such graphs m–diagrams; they are as many as the pairings of 2m
elements, hence (2m − 1)!! in number. We define a product of m–diagrams
a and b by the following rule:

(1) draw b below a;
(2) connect the i–th lower vertex of a with the i–th upper vertex of b;
(3) let d be the number of cycles in the new graph obtained in (2) and

let c be this graph without the cycles; then c is an m–diagram, and
we set ab := xdc .
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It is well-known that the C(x)–algebra with basis the set of m–diagrams
and product defined by linear extension of the rule above is canonically
isomorphic to Bx

m.
Using the description of Bx

m just recalled, Wenzl shows the following:

Proposition 7.1. ([Wz], §3) If N ∈ C is not an integer such that
[
|N |
2

]
<

m, then BN
m is semisimple, and its decomposition into direct sum of full

matrix rings is the same of Bx
m. In fact Bx

m
∼= C(x)⊗ BN

m .

As a consequence, the representation theory of the Brauer algebra is the
same in the formal parameter case and in the stable case.

Now we sketch the construction of irreducible representations provided by
Kerov.

Definition. Let m ∈ N+, k ∈ {1, . . . , [m/2]}. We call (m, k)–junction any
graph with m vertices and k edges such that each edge joins exactly two
vertices and each vertex belongs to at most one edge. We denote the set of
(m, k)–junctions by Xm,k, and by Hm,k the C–vector space with basis Xm,k.

It is clear that dim(Hm,k) =
∣∣Xm,k

∣∣ = (m
2k

)
(2k − 1)!! . The following is

an example of (8, 2)–junction:

Let a be an m–diagram, and let v be an (m, k)–junction; for all i =
1, . . . ,m, connect the i–th lower vertex of a with the i–th vertex of v: let d
be the number of loops occurring in the new graph Γ(a, v) obtained in this
way, and let a ∗ v be the graph made of the points of the upper line of a,
connected by an edge iff they are connected (by an edge or a path) in the
new graph Γ(a, v); then a ∗ v ∈ Xm,k′ , with k′ ≥ k and k′ = k iff each pair
of vertices of v which are connected by a path in Γ(a, v) are in fact linked
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by an edge in v: in this cases we say that the (m, k)–junction v is admissible
for the m–diagram a.

We set
a.v := xda ∗ v if v is admissible for a

a.v := 0 otherwise.
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Proposition 7.2. ([K]) Linear extension of the previous rule endows Hm,k

with a well-defined structure of Bx
m–module, which is irreducible.

To any pair (a, v) of an m–diagram and an (m, k)–junction we can also
attach an element π(a, v) ∈ Sm−2k: this is the permutation which carries
— through the graph Γ(a, v) — the isolated vertices of v into the isolated
vertices of a ∗ v (one keeps into account only the relative position of the
isolated vertices in v, a ∗ v) in case v is admissible for a, and is id otherwise.

In the previous example we have π(a, v) =

(
1 2 3
2 1 3

)
.

Given Hm,k, let µ ⊢ (m − 2k) and let Mµ be the associated irreducible
representation of Sm−2k : we set

Hµ
m,k :=Mµ ⊗Hm,k .

Proposition 7.3. ([K]) Linear extension of the rule

a.(u⊗ v) := π(a, v).u⊗ a.v

(for every m–diagram a and every (m, k)–junction v) endows Hµ
m,k with a

well-defined structure of Bx
m–module, which is irreducible. Conversely, any

irreducible representation of Bx
m is isomorphic to one of the Hµ

m,k.

From now on, for all µ ⊢ (m−2k) we denote by µ′ the transposed partition
of µ; then we fix any identificationMµ′ ∼= Σm−2k⊗Mµ and define ϕ′′: Mµ →
Mµ′ ∼= Σm−2k ⊗Mµ by ϕ′′(m) := 1⊗m. Finally set Nk := IndS2k

S2
×k

(
T2

⊗k
)
.

Our goal is to show that Hµ′

m,k is isomorphic, as B−2n
m –module, to the

IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
. We need the following easy lemma:

Lemma 7.4. There exist isomorphisms of S2k–modules

ϕ′:
(
V ⊗2k

)Sp(V ) ⊗ Σ2k

∼=−→Nk

(dim(V ) = 2n) where Σ2k is the sign representation of S2k, and

ϕ′:
(
V ⊗2k

)O(V ) ∼=−→Nk

(dim(V ) = n).
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Theorem 7.5. There exists a B−2n
m –isomorphism

ϕ: IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
) ∼=−→Hµ′

m,k

(symplectic case) and a Bn
m–isomorphism

ϕ: IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)O(V )
) ∼=−→Hµ

m,k

(orthogonal case).

Proof. The very definitions give

Hµ′

m,k :=Mµ′ ⊗ IndSm

Hk
(Nk) ∼=Mµ′⊗

 ⊕
σ̄∈Sm/Hk

σ.Nk

 ∼=
⊕

σ̄∈Sm/Hk

Mµ′ ⊗σ.Nk

and

IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
=

⊕
σ̄∈Sm/Hk

σ.
(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
;

by Lemma 7.4 these two spaces have the same dimension. Now the assign-
ment

ϕ̃: m⊗ v 7→ ϕ′′(m)⊗ 1̄.ϕ′(v)

provides a linear map

ϕ̃: Mµ ⊗
(
V ⊗2k

)Sp(V ) −→Mµ′ ⊗ IndSm

Hk
(Nk) =: Hµ′

m,k ;

moreover, this is a morphism of Hk–modules: in fact

(τ, ν).ϕ̃
(
u⊗ v

)
= (τ, ν).

(
ϕ′′(u)⊗ 1̄.ϕ′(v)

)
=

= π
(
τ · ν, 1̄.ϕ′(v)

)
.ϕ′′(u)⊗ (τ · ν).ϕ′(v) = τ.ϕ′′(u)⊗ 1̄.ϕ′(ν.v) =

= ϕ̃
(
sgn(τ)τ.u⊗ sgn(ν)ν.v

)
= ϕ̃

(
(τ, ν).(u⊗ v)

)
for all (τ, ν) ∈ Hk = Sm−2k × S2k and u ⊗ v ∈ Mµ ⊗

(
V ⊗2k

)Sp(V )
(recall

that B−2n
m acts on IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
through the action of B−2n

m

and the isomorphism ∆−). Therefore ϕ̃ has a unique Sm–invariant extension

ϕ to IndSm

Sm−2k×S2k
(Mµ ⊗Nk), i.e. we have a morphism of Sm–modules

IndSm

Hk

(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
−→ Hµ′

m,k . Clearly ϕ
(
Mµ ⊗

(
V ⊗2k

)Sp(V )
)
=
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Mµ′ ⊗ 1̄.Nk, so by Sm–equivariance we deduce that ϕ is onto, and finally for
dimension reasons it is a linear isomorphism.

As for operators Tpq, thanks to the Sm–action it is enough to check that

ϕ
(
Tpq.(u ⊗ v)

)
= Tpq.ϕ(u ⊗ v) for all u ⊗ v ∈ Mµ ⊗

(
V ⊗2k

)Sp(V )
, p, q ∈

{1, . . . ,m}(p < q). We have three cases: p, q ∈ {1, . . . ,m − 2k}, p, q ∈
{m− 2k + 1, . . . ,m}, and p ∈ {1, . . . ,m− 2k}, q ∈ {m− 2k + 1, . . . ,m}.

The first two cases are trivial at all; as for the third one, we can assume
that v is a monomial, so that ϕ′(v) is a junction: in this junction, let the
q–th spot be linked with the r–th one; then we have:

ϕ
(
Tpq.(u⊗ v)

)
= ϕ

(
− τpq.(u⊗ v)

)
= ϕ

(
− (pr).(u⊗ v)

)
=

= (pr).ϕ(u⊗ v) = (pr).ϕ′′(u)⊗ 1̄.ϕ′(v)

Tpq.
(
ϕ(u⊗ v)

)
= Tpq.(ϕ

′′(u)⊗ 1̄.ϕ′(v)) =

= π(Tpq, ϕ
′(v)).ϕ′′(u)⊗ Tpq.ϕ

′(v) = (pr).ϕ′′(u)⊗ 1̄.ϕ′(v)

i.e. ϕ
(
Tpq.(u⊗ v)

)
= Tpq.

(
ϕ(u⊗ v)

)
.

Once again the same arguments work in the orthogonal case too, with
some shortcuts and simplifications. �
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