Let U be a complex vector space endowed with an orthogonal or symplectic form, and let G be the subgroup of GL(U) of all the symmetries of this form (resp. O(U) or Sp(U)); if M is an irreducible GL(U)-module, the Littlewood's restriction rule describes M as a G-module (via restriction). In this paper we give a new representation-theoretic proof of this formula: realizing M in a tensor power U^{\otimes f} and using Schur's duality, we reduce to the problem of describing the restriction to an irreducible S_f-module of an irreducible module for the centralizer algebra of the action of G on U^{\otimes f} ; the latter is a quotient of the Brauer algebra, and we know the kernel of the natural epimorphism, whence we deduce the Littlewood's restriction rule.
Gavarini, F. (1999). A Brauer Algebra Theoretic Proof of Littlewood's Restriction Rules. JOURNAL OF ALGEBRA, 212(1), 240-271 [10.1006/jabr.1998.7536].
A Brauer Algebra Theoretic Proof of Littlewood's Restriction Rules
GAVARINI, FABIO
1999-02-01
Abstract
Let U be a complex vector space endowed with an orthogonal or symplectic form, and let G be the subgroup of GL(U) of all the symmetries of this form (resp. O(U) or Sp(U)); if M is an irreducible GL(U)-module, the Littlewood's restriction rule describes M as a G-module (via restriction). In this paper we give a new representation-theoretic proof of this formula: realizing M in a tensor power U^{\otimes f} and using Schur's duality, we reduce to the problem of describing the restriction to an irreducible S_f-module of an irreducible module for the centralizer algebra of the action of G on U^{\otimes f} ; the latter is a quotient of the Brauer algebra, and we know the kernel of the natural epimorphism, whence we deduce the Littlewood's restriction rule.File | Dimensione | Formato | |
---|---|---|---|
Litt-Brauer_ref.pdf
accesso aperto
Descrizione: This is the Author's own post-print version
Licenza:
Copyright dell'editore
Dimensione
340.22 kB
Formato
Adobe PDF
|
340.22 kB | Adobe PDF | Visualizza/Apri |
Litt-Brauer_STA.pdf
solo utenti autorizzati
Descrizione: This is the Editor's (Academic Press) printed version
Licenza:
Copyright dell'editore
Dimensione
278.39 kB
Formato
Adobe PDF
|
278.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with all bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
129.03 kB
Formato
Adobe PDF
|
129.03 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with all bibliographic metadata of this article
Licenza:
Non specificato
Dimensione
108.3 kB
Formato
Adobe PDF
|
108.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.