Let U be a complex vector space endowed with an orthogonal or symplectic form, and let G be the subgroup of GL(U) of all the symmetries of this form (resp. O(U) or Sp(U)); if M is an irreducible GL(U)-module, the Littlewood's restriction rule describes M as a G-module (via restriction). In this paper we give a new representation-theoretic proof of this formula: realizing M in a tensor power U^{\otimes f} and using Schur's duality, we reduce to the problem of describing the restriction to an irreducible S_f-module of an irreducible module for the centralizer algebra of the action of G on U^{\otimes f} ; the latter is a quotient of the Brauer algebra, and we know the kernel of the natural epimorphism, whence we deduce the Littlewood's restriction rule.

Gavarini, F. (1999). A Brauer Algebra Theoretic Proof of Littlewood's Restriction Rules. JOURNAL OF ALGEBRA, 212(1), 240-271 [10.1006/jabr.1998.7536].

A Brauer Algebra Theoretic Proof of Littlewood's Restriction Rules

GAVARINI, FABIO
1999-02-01

Abstract

Let U be a complex vector space endowed with an orthogonal or symplectic form, and let G be the subgroup of GL(U) of all the symmetries of this form (resp. O(U) or Sp(U)); if M is an irreducible GL(U)-module, the Littlewood's restriction rule describes M as a G-module (via restriction). In this paper we give a new representation-theoretic proof of this formula: realizing M in a tensor power U^{\otimes f} and using Schur's duality, we reduce to the problem of describing the restriction to an irreducible S_f-module of an irreducible module for the centralizer algebra of the action of G on U^{\otimes f} ; the latter is a quotient of the Brauer algebra, and we know the kernel of the natural epimorphism, whence we deduce the Littlewood's restriction rule.
1-feb-1999
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
classical groups; restriction rules; Schur-Brauer-Weyl duality; Brauer algebras
http://www.sciencedirect.com/science/article/pii/S0021869398975366
Gavarini, F. (1999). A Brauer Algebra Theoretic Proof of Littlewood's Restriction Rules. JOURNAL OF ALGEBRA, 212(1), 240-271 [10.1006/jabr.1998.7536].
Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Litt-Brauer_ref.pdf

accesso aperto

Descrizione: This is the Author's own post-print version
Licenza: Copyright dell'editore
Dimensione 340.22 kB
Formato Adobe PDF
340.22 kB Adobe PDF Visualizza/Apri
Litt-Brauer_STA.pdf

solo utenti autorizzati

Descrizione: This is the Editor's (Academic Press) printed version
Licenza: Copyright dell'editore
Dimensione 278.39 kB
Formato Adobe PDF
278.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with all bibliographic metadata of this article
Licenza: Non specificato
Dimensione 129.03 kB
Formato Adobe PDF
129.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with all bibliographic metadata of this article
Licenza: Non specificato
Dimensione 108.3 kB
Formato Adobe PDF
108.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/19084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact