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A BRAUER ALGEBRA THEORETIC PROOF

OF LITTLEWOOD’S RESTRICTION RULES
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Università degli Studi di Roma “Tor Vergata” — Dipartimento di Matematica
Via della Ricerca Scientifica, I-00133 Roma — ITALY

Abstract. Let U be a complex vector space endowed with an orthogonal or symplectic form,
and letG be the subgroup ofGL(U) of all the symmetries of this form (resp. O(U) or Sp(U)); if
M is an irreducible GL(U)–module, the Littlewood’s restriction rule describes the G–module

M
∣∣GL(U)

G
. In this paper we give a new representation-theoretic proof of this formula: realizing

M in a tensor power U⊗f and using Schur’s duality we reduce to the problem of describing the
restriction to an irreducible Sf–module of an irreducible module for the centralizer algebra

of the action of G on U⊗f ; the latter is a quotient of the Brauer algebra, and we know the
kernel of the natural epimorphism, whence we deduce the Littlewood’s restriction rule.

”Non potrai dir che quest’ è cosa dura:
usando la dualità di Brauer

dimostrazione dar, novella e pura”

N. Barbecue, ”Scholia”

Introduction

Let U be a complex vector space, endowed with an orthogonal or symplectic form, and
let G be either O(U) or Sp(U) respectively. Consider a simple polynomial GL(U)–module
Vλ (associated in a standard way to a partition λ), and restrict it to G; if λt1 + λt2 ≤
dim(U) (in the orthogonal case), λt being the dual partition to λ, or λt1 ≤ dim(U)

/
2

(in the symplectic case) then its decomposition into simple G–modules is described by the
Littlewood’s restriction rule (cf. [L]), which gives a formula for the multiplicity in Vλ of
each simple G–module. The main aim in this article is to prove this formula.

It is well known (cf. e.g. [W], [H]) that one can realize a copy of Vλ inside the tensor power
U⊗f , where f is the sum of parts of λ (i.e. λ is a partition of f ); by the general theory
of centralizer algebras, a bijection Vλ ←→ Mλ exists between simple GL(U)–modules
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and simple modules over EndGL(U)

(
U⊗f

)
(the centralizer algebra of the GL(U)–action

on U⊗f ) occurring in U⊗f , which interchanges dimensions and multiplicities; similarly,
a bijection Wµ ←→ Nµ exists between simple G–modules and simple modules over
EndG

(
U⊗f

)
(the centralizer algebra of the G–action on U⊗f ) occurring in U⊗f (which

is now thought of as a G–module), which interchanges dimensions and multiplicities: then
we have an identity

[
Vλ : Wµ

]
=
[
Nµ : Mλ

]
, thus to get the multiplicity

[
Vλ : Wµ

]
we

can compute the above right-hand-side term instead: in other words, instead of studying

Vλ

∣∣∣GL(U)

G
we study Nµ

∣∣∣EndG(U⊗f)

EndGL(U)(U⊗f )
. So if[
Vλ :Wµ

]
= Cλ

µ (⋆)

is the identity given in Littlewood’s restriction formula, our aim is to prove that[
Nµ :Mλ

]
= Cλ

µ (⋆⋆)

Now, one has that EndGL(U)

(
U⊗f

)
= C

[
Sf

]
, with Sf acting on U⊗f by index permu-

tation; on the other hand, EndG
(
U⊗f

)
is a quotient of the Brauer algebra B(ϵN)

f , where

N = dimC(U) and ϵ is the ”sign” of the form on U (”+” for orthogonal and ”−” for

symplectic case); the kernel of πU : B(ϵN)
f −� EndG

(
U⊗f

)
is also known, essentially

from the Second Fundamental Theorem of Invariant Theory (for the group G). In the
stable case (i.e. when f ≤ N

/
2 in the symplectic case and f ≤ N in the orthogonal case)

πU is an isomorphism, and Littlewood’s formula can be proved as a corollary of a suitable
description of V ⊗f (cf. [GP]). In the general case a different approach is necessary.

To describe B(x)
f we can display an explicit basisDf —whose elements are certain graphs

— and assign the multiplication rules for elements in this basis — based on ”composition”
of graphs. Then from the previously mentioned description of Ker

(
πU
)
we take out an

explicit set of linear generators of this kernel.

In addition, the simple G–modules Nµ are quotients of certain B(εN)
f –modules N ′

µ which

have a nice combinatorial description (in terms of graphs related to those ofDf ); moreover,
we prove that the kernel of the epimorphism N ′

µ −� Nµ is just Ker
(
πU
)
.N ′

µ . Now, the

multiplicity
[
N ′

µ :Mλ

]
is exactly equal to the right-hand-side part of (⋆); then it is enough

for us to show that in Ker
(
πU
)
.N ′

µ , as a C
[
Sf

]
–module, there are no components of type

Mλ for λ such that λt1+λ
t
2 ≤ dim(U) (in the orthogonal case) or λt1 ≤ dim(U)

/
2 (in the

symplectic case): this we deduce from the description of Ker
(
πU
)
.
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§1 Reminders of Invariant Theory

1.1 The Fundamental Theorems of Invariant Theory. In this section we recall
some well-known facts of Classical Invariant Theory; the general source is [We], nevertheless
we shall also mention more specific — and recent — references.
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Let f ∈ N+ be fixed. Consider n ∈ N ; let V be a C–vector space of dimension n, en-
dowed with a non-degenerate symmetric bilinear form ( , ) , and let O(V ) be the associated
orthogonal group. On the other hand, letW be a C–vector space of dimension 2n, endowed
with a non-degenerate skew-symmetric bilinear form ⟨ , ⟩ , and let Sp(W ) be the associated

symplectic group. In this setting, we have canonical isomorphisms V
∼=−→V ∗, v 7→ (v, · ) ,

W
∼=−→W ∗, w 7→ ⟨w, · ⟩ , which also gives isomorphisms

ΘV : V ⊗ V
∼=−−−−−−→End(V ) ΘW :W ⊗W

∼=−−−−−−→End(W )

v1 ⊗ v2 7→ ΘV (v1 ⊗ v2)
(
v 7→

(
v1, v

)
v2

)
w1 ⊗ w2 7→ ΘW (w1 ⊗ w2)

(
w 7→

⟨
w1, w

⟩
w2

)
Then V ⊗2f

∼=−→
(
V ⊗2f

)∗
, V ⊗2f = V ⊗f⊗V ⊗f

∼=−→End
(
V ⊗f

)
, and

(
V ⊗2f

)∗ ∼=−→End
(
V ⊗2f

)
,

whence also ΨV :
((
V ⊗2f

)∗)O(V ) ∼=−→
(
End

(
V ⊗2f

))O(V )

= EndO(V )

(
V ⊗f

)
; and similarly

for W , in particular ΨW :
((
W⊗2f

)∗)Sp(W ) ∼=−→
(
End

(
W⊗2f

))Sp(V )

= EndSp(W )

(
W⊗f

)
.

Finally, we define ψV := Θ−1
V (idV ) , ψW := Θ−1

W (idW ) .

Definition 1.2. Fix f ∈ N+ ; for each pair p, q ∈ {1, 2, . . . , f} with p ̸= q we define
(a) a contraction operator Φp,q : V ⊗(f+2) −−−→ V ⊗f (for p < q , say)

Φp,q

(
v1 ⊗ v2 ⊗ · · · ⊗ vf+2

)
=
(
vp , vq

)
· v1 ⊗ · · · v̂p ⊗ · · · ⊗ v̂q ⊗ · · · ⊗ vf+2 ;

(b) an insertion operator Ψp,q : V ⊗f −−−→ V ⊗(f+2) , obtained inserting the
element ψV in the positions p, q ;

(c) an operator τp,q : V ⊗f −−−→ V ⊗f defined by τp,q := Ψp,q ◦ Φp,q .

The same definition with ⟨ , ⟩ instead of ( , ) gives operators Φp,q :W⊗(f+2) −→W⊗f ,

Ψp,q :W⊗f −→W⊗(f+2), τp,q :W⊗f −→W⊗f in the symplectic case.

In addition, the symmetric group Sf acts on V ⊗f or W⊗f by

σ : u1 ⊗ u2 ⊗ · · · ⊗ uf 7→ uσ−1(1) ⊗ uσ−1(2) ⊗ · · · ⊗ uσ−1(f) ∀σ ∈ Sf

Theorem 1.3. (I Fundamental Theorem for O(V ) and Sp(W )) The operators τp,q (p ̸= q)
and σ (∈ Sf ) generate the whole centralizer algebra, EndO(V )

(
V ⊗f

)
or EndSp(W )

(
W⊗f

)
.

Let P
(
X⊕f

)
denote the space of polynomial functions on X⊕f , for any vector space X.

Theorem 1.4. (II Fundamental Theorem for O(V ) and Sp(W ): cf. [DP], Th. 6.7)

(a)
(
P
(
V ⊕f

))O(V )

= C
[
(vi, vj)

]
.

Moreover, the ideal of relations between the generators (vi, vj) is generated by the mi-
nors of order (n+ 1) of the f × f symmetric matrix

(
(vi, vj)

)
i,j=1,...,f

.

(b)
(
P
(
W⊕f

))Sp(V )

= C
[
⟨wi, wj⟩

]
.

Moreover, the ideal of relations between the generators ⟨vi, vj⟩ is generated by the Pfaf-
fians of order 2(n+ 1) of the f × f skew-symmetric matrix

(
⟨wi, wj⟩

)
i,j=1,...,f

.
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Now consider the polynomial rings (in the symmetric or antisymmetric variables xij)

AO := C[xij ]2fi,j=1,i̸=j

/
(xij = xji) , ASp := C[xij ]2fi,j=1,i̸=j

/
(xij = −xji)

For X ∈{O,Sp}, define AX
f (the space of multilinear elements in AX) to be the C–span

of all monomials (of degree f) xi1j1xi2j2 · · ·xif jf such that (i1, j1, i2, j2, . . . , if , jf ) is a
permutation of {1, 2, 3, 4, . . . , 2f}.

Of course AX
f is an S2f–module, described by the statement below (cf. [LP], Proposition

3.3); hereafter, when dealing with a symmetric group Sh we write λ ⊢ h to mean that λ is
a partition of h (∈ N), for given λ ⊢ h we denote by λt the dual partition, and by Mλ the
associated irreducible representation of Sh (with the assumption that M(h) is the trivial
representation of Sh and M(1,1,...,1︸ ︷︷ ︸

h

) is the sign (alternating) representation.

Proposition 1.5. The representation of S2f on AO
f , resp. ASp

f , is induced by the trivial,
resp. sign, representation of Kf . Moreover, there are isomorphisms of S2f–modules

AO
f
∼=

⊕
σ⊢2f

σ has even rows

Mσ , resp. ASp
f
∼=

⊕
σ⊢2f

σ has even columns

Mσ .

Now let i := (i1, i2, . . . , if ) , j := (j1, j2, . . . , jf ) be such that (i1, j1, . . . , if , jf ) is a

permutation of {1, 2, . . . , 2f − 1, 2f}. We define η i, j ∈
(
V ⊗2f

)∗
and η i, j ∈

(
W⊗2f

)∗
, by

η i, j(v1 ⊗ · · · ⊗ v2f ) :=
f∏

k=1

(vik , vjk) , η i, j(w1 ⊗ · · · ⊗ w2f ) :=

f∏
k=1

⟨wik , wjk⟩ ;

it is clear that η i, j ∈
((
V ⊗2f

)∗)O(V )

, resp. η i, j ∈
((
W⊗2f

)∗)Sp(W )

. Remark that both(
V ⊗2f

)∗
and

(
W⊗2f

)∗
are S2f–modules and, since the action of S2f centralizes that of

the form-preserving group, also
((
V ⊗2f

)∗)O(V )

and
((
W⊗2f

)∗)Sp(W )

are S2f–modules.

Similarly, we shall use the notation x i, j := xi1j1xi2j2 · · ·xif jf .

Proposition 1.6 ([LP], Th. 3.8). The linear map

αV : AO
f −−−→

((
V ⊗2f

)∗)O(V )

, resp. αW : ASp
f −−−→

((
W⊗2f

)∗)Sp(W )

defined by αV (x i, j) = η i, j , resp. αW (x i, j) = η i, j , is a surjective homomorphism of

S2f–modules, whose kernel is the intersection of AO
f , resp. A

Sp
f , with the ideal Minn+1,

resp. Pf2(n+1), of A
O, resp. ASp, generated by the minors of order n + 1, resp. the Pfaf-

fians of order 2n + 2, of the symmetric, resp. skew-symmetric, matrix
(
xij
)2f
i,j=1

, and it

corresponds — in the isomorphism of Proposition 1.5 — to the S2f–submodule⊕
σ⊢2f , l(σ)>n

σ has even rows

Mσ , resp.
⊕

σ⊢2f , l(σ)>2n
σ has even columns

Mσ .
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§2 The Brauer algebra

2.1 f–diagrams. Let f ∈ N+ be fixed. Denote by Vf the datum of 2f spots in a
plane, arranged in two rows, one upon the other, each of f aligned spots. Then consider
the graphs with Vf as set of vertices and f edges such that each vertex belongs to exactly
one edge. The picture below shows an example of such a graph for f = 6 .

We call such graphs f–diagrams, denoting by Df the set of all of them; in general we
shall denote them by bold roman letters, like d. Of course the f–diagrams are as many as
the pairings of 2f elements, hence (2f − 1)!! := (2f − 1) · (2f − 3) · · · 5 · 3 · 1 in number.

We shall label the vertices in Vf in two ways: either we label the spots in the upper row
with the numbers 1+, 2+, . . . , f+, in their natural order from left to right, and the spots in
the lower row with the numbers 1−, 2−, . . . , f−, again from left to right, or we label them by
setting i for i+ and f+j for j− (for all i, j ∈ {1, 2, . . . , f}). Accordingly, an f–diagram can
also be described by simply specifying its set of edges: so for instance the 6–diagram above
is given by

{
{1+, 4+}, {3−, 5+}, {2+, 4−}, {5−, 6+}, {2−, 6−}, {3+, 1−}

}
. In general, given

f–tuples i := (i1, i2, . . . , if ) and j := (j1, j2, . . . , jf ) such that {i1, . . . , if} ∪ {j1, . . . , jf} =
Vf , we define di, j to be the f–diagram obtained by joining ik to jk, for each k =
1, 2, . . . , f . For instance, the above diagram is di, j for i = {1+, 2+, 3+, 5+, 6+, 2−}, j =
{4+, 4−, 1−, 3−, 5−, 6−}.

When looking at the edges of an f–diagram, we shall distinguish between those which
link two vertices in the same row (upper or lower), which will be called horizontal edges or
simply bars, and those which link two vertices in different rows, to be called vertical edges.
It is clear that any f–diagram has the same number of bars in the upper row and in the
lower one: if this number is k, we shall say that this is a k–bar (f–)diagram. Thus letting

Df,k :=
{
d ∈ Df

∣∣d is a k–bar diagram
}

we have Df = ∪[f/2]k=1 Df,k .

2.2 Bar structure and permutation structure of diagrams. Let d be an f–
diagram. With ”bar structure of the upper row”, resp. ”lower row”, of d we shall mean
the datum of the bars in the upper, resp. lower, row of d (in their positions): to be short
we shall also use such terminology as ”upper bar structure”, resp. ”lower bar structure”,
of d — to be denoted with ubs(d) , resp. lbs(d) — and ”bar structure of d” — to be
denoted with bs(d) — to mean the datum of both the upper and the lower bar structure
of d, i.e. bs(d) :=

(
ubs(d), lbs(d)

)
. Notice that an upper or lower bar structure may be

described by a one-row graph of vertices arranged on a horizontal line and some edges (the
”bars”) joining them pairwise so that every vertex belongs at most to one edge: following
Kerov (cf. [Ke]) such a graph will be called a k–bar f–junction, or (f, k)–junction, where
f is its number of vertices and k its number of edges; for instance, here below you find
the 1–bar 6–junctions which represent the upper (on the left hand side) and lower (on the
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right hand side) bar structure of the 6–diagram in §2.1:

We denote the set of (f, k)–junctions by Jf,k , and by Hf,k the C–vector space with

basis Jf,k. It is clear from definitions that dim(Hf,k) =
∣∣Jf,k∣∣ = ( f

2k

)
(2k − 1)!! . Finally,

for all µ ⊢ (f − 2k) (k ∈ {0, 1, . . . , [f/2]}) we define Hµ
f,k :=Mµ ⊗Hf,k .

If d ∈ Df,k then it has exactly f−2k vertices in its upper row and f−2k vertices in its
lower row which are pairwise joined by its f −2k vertical edges; label with 1, 2, . . . , f −2k
from left to right the vertices in the upper row, and do the same in the lower row: then we
can define a permutation σ = σ(d) ∈ Sf−2k — to be called the ”permutation structure”
(or ”symmetric part”) of d — by letting σ(i) be the label of the lower row vertex of the
vertical edge whose upper row vertex is labelled with i.

The upshot is that the assignement d 7→
(
σ(d),bs(d)

)
establishes a bijection

Df,k −−−→ Sf−2k ×
(
Jf,k × Jf,k

)
(2.1)

and glueing together these maps for all k gives a bijection Df −→
∪[f/2]

k=1 Sf−2k×
(
Jf,k

×2
)
.

2.3 Definition of the Brauer algebra. Fix any field K, and take x ∈ K . Let B(x)
f be

the K–vector space with basis Df ; we introduce a product in B(x)
f (which depends on x) by

defining the product of f–diagrams and extending by linearity. So for all a,b ∈ Df define
the product a · b = ab as follows: first draw b below a; second, connect the i–th lower
vertex of a with the i–th upper vertex of b; third, let C(a,b) be the number of cycles in
the new graph obtained in (2) and let c = a ∗b be this graph without the cycles; then c is
an f–diagram, and we set a·b ≡ ab := xC(a,b)a∗b . We denote by ∗ : Df×Df → Df the
map given by (a,b) 7→ a ∗ b and C : Df ×Df → N the map given by (a,b) 7→ C(a,b) .

The following is a simple example:

It is well-known that such a definition endows B(x)
f with a structure of unital associative

K–algebra. Notice that, given diagrams a and b, the upper, resp. lower, bar structure of
the diagram a ∗ b ”contains” that of a, resp. b; in particular if a ∈ Df,a and b ∈ Df,b

this gives a ∗ b ∈ Df,max(a,b) .
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One can endow B(x)f with several additional structures; in particular, we recall the
following ones. The upside down reversing of f–diagrams uniquely defines an antiinvolution

Ω : B(x)f → B(x)f . The symmetric group S2f acts on Vf , once a numbering of the spots in
Vf is fixed; then it acts also on Df in the obvious way, and then linear extension gives an

action on B(x)f too (which does not preserve multiplication, though).

In this paper we consider K = C (but the results of this section hold for any K).

2.4 The embedding Sf −→ B(x)
f . By the very definitions one has that Df,0 , as

a subset of B(x)
f , is closed under the product, i.e. it is a subsemigroup. Now, for any

σ ∈ Sf let dσ ∈ Df,0 be the f–diagram obtained by joining i+ with σ(i)
−

(notation

of §2.3). Then the map Sf → Df,0 ⊂ B(x)
f is a morphism of semigroups, whose image

is Df,0 ; thus B(x)
f contains a copy of Sf (namely Df,0) and a copy of the group algebra

C [Sf ]. Thus restricting the left (right) regular representation of B(x)f (on itself) we get

a left (right) action of Sf on B(x)
f . Furthermore, the restriction of Ω : B(x)

f → B(x)
f to

C [Sf ] (= C [Df,0] ) is the antipode, given by σ 7→ σ−1 for all σ ∈ Sf .

2.5 Presentation by generators and relations. Besides the construction above,
we can give the Brauer algebra a presentation by generators and relations. From §2.4 we

know that B(x)f contains a copy of the symmetric group on f elements; moreover, for any

pair of distinct indices i, j ∈ {1, 2, . . . , f} we define hi,j to be the f–diagram with a bar
joining i+ with j+, a bar joining i− with j−, and one vertical edge joining k+ with k− for
all k ∈ {1, 2, . . . , f} \ {i, j} . By definition, hi,j ∈ Df,1 . For instance, h3,6 ∈ D7,1 is

Theorem 2.6 ([DP], §7). B(x)f is the associative C–algebra with generators dσ, in bi-
jection with elements of Sf , and hi,j, for all i, j = 1, 2, . . . , f and i ̸= j, and relations
(assume all the index sets disjoint)

hi,j = hj,i dσhi,jdσ−1 = hσ(i),σ(j) hi,jhh,k = hh,khi,j

hi,jhj,k = hi,jd(i k) h2
i,j = xhi,j hi,j = hi,jd(i j)

as well as all relations of the symmetric group Sf among the dσ’s.

2.7 The sign of a diagram. The previous theorem means that B(x)
f is generated by

Df,0 and Df,1 ; even more, since Df,1 is a single Df,0–orbit (i.e. Sf–orbit) it is enough to

take only one 1–bar f–diagram, thus B(x)
f is generated for instance by Df,0 ∪ {h1,2}.

In particular, for any d ∈ Df,k there exist unique dσ,dρ ∈ Df,0 such that d =
dσ h1,2 · · ·h2k−1,2k dρ ; moreover, we can choose such σ and ρ so that they do not invert
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any of the pairs (1, 2), (3, 4), . . . , (2k − 1, 2k). Then given such a factorization of d we

define the sign of d to be ε(d) := sgn(σ) · (−1)k · sgn(ρ) .

2.8 The standard series. For any k ∈ {1, 2, . . . [f/2]} , we define B(x)f ⟨k⟩ to be

the vector subspace of B(x)f spanned by Df,k ; then we set B(x)
f (k) :=

⊕
h≥k

B(x)
f ⟨h⟩ . By

definition, the B(x)
f (k)’s form a chain of subspaces (the ”standard series”)

B(x)f = B(x)
f (0) ⊃ B(x)f (1) ⊃ · · · ⊃ B(x)f (k) ⊃ · · · ⊃ B(x)f

(
[f/2]

)
⊃ 0

and each quotient B(x)
f [k] := B(x)f (k)

/
B(x)f (k+1) is well-defined (with B(x)

f

(
[f/2]+1

)
:= 0).

The very definitions imply that each B(x)
f (k) is a (two-sided) ideal of B(x)

f : therefore

every quotient B(x)
f [k] inherits a structure of associative C–algebra, one of left B(x)f –module,

and one of right B(x)
f –module. Furthermore, since B(x)

f (k) = B(x)f ⟨k⟩ ⊕ B
(x)
f (k + 1) , any

basis for B(x)
f ⟨k⟩, taken modulo B(x)

f (k + 1), serves as basis for the residue class algebra

B(x)
f [k] ; in particular we shall use Df,k as a basis of B(x)

f [k]. Note that, since the B(x)
f (k)’s

are two sided ideals of B(x)
f , the B(x)f [k]’s are B(x)

f –bimodules.

2.9 The structure of B(x)f [k]. Let k ∈ {1, 2, . . . [f/2]} be fixed. By inverting (2.1)
and extending by linearity two linear isomorphisms

� : C
[
Sf−2k

]
⊗
(
Hf,k ⊗Hf,k

)
−−−→ B(x)f ⟨k⟩

� : C
[
Sf−2k

]
⊗
(
Hf,k ⊗Hf,k

)
−−−→ B(x)f [k]

are defined: more precisely, given any z ∈ C
[
Sf−2k

]
we can express it as a linear combi-

nation of permutations: attaching to all of them the same bar structure we get a linear
combination of k–bar f–diagrams, which all share the same bar structure.

From Young’s theory, C
[
Sf−2k

]
splits into C

[
Sf−2k

]
=

⊕
µ⊢(f−2k)

Iµ , where every Iµ is a

two-sided ideal of C
[
Sf

]
and a simple algebra, namely the algebra of linear endomorphisms

of the simple Sf−2k–module Mµ, which is a full matrix algebra over C . Then for every

µ ⊢ (f − 2k) (k ∈ {0, 1, . . . , [f/2]}) we define B(x)f [k;µ] := �
(
Iµ ⊗ (Hf,k ⊗Hf,k)

)
.

Theorem 2.10 (cf. [Bw2], §§2.2–3). Let µ ⊢ (f − 2k) . Then B(x)
f [k;µ] is a two-

sided ideal of B(x)
f [k], and also a B(x)

f –sub-bimodule (of B(x)
f [k]); its semisimple quotient

(as an algebra) is simple. Moreover, the various B(x)
f [k;µ] (for different µ) are pairwise

non-isomorphic, and B(x)
f [k] splits as a direct sum

B(x)
f [k] =

⊕
µ⊢(f−2k)

B(x)
f [k;µ] .
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2.11 Representations of B(x)f . In section 2.2 we defined the vector spaces Hµ
f,k : now

we endow them with a structure of B(x)f –modules, following Kerov (cf. [Ke], [HW], [GP]).

Let d be an f–diagram, and let v be an (f, k)–junction; for all i = 1, . . . , f , connect
the i–th lower vertex of d with the i–th vertex of v: let C(d, v) be the number of loops
occurring in the new graph Γ(d, v) obtained in this way, and let a ⋆ v be the graph made
of the vertices of the upper line of d, connected by an edge iff they are connected (by an
edge or a path) in the new graph Γ(d, v); then d ⋆ v ∈ Jf,k′ , with k′ ≥ k and k′ = k iff
each pair of vertices of v which are connected by a path in Γ(d, v) are in fact joined by an
edge in v: in this case we say that the junction v is admissible for the diagram d. We set

d.v := xC(d,v) d ⋆ v if v is admissible for d , d.v := 0 otherwise .

here are two examples:

To any pair (d, v) ∈ Df × Jf,k we can also attach an element π(d, v) ∈ Sf−2k : this is
the permutation which carries — through the graph Γ(d, v) — the isolated vertices of v
into the isolated vertices of d ⋆ v (one takes into account only the relative position of the
isolated vertices in v, d ⋆ v) in case v is admissible for a, otherwise it is id. In the previous
example we have π(d, v) =

(
1 2 3
2 1 3

)
.

Proposition 2.12 (cf. [Ke], [Bw2]). Linear extension of the rule d.(u ⊗ v) :=
π(d, v).u⊗ d.v for every (d, v) ∈ Df × Jf,k endows Hµ

f,k with a well-defined structure of

module over B(x)
f ; then Hµ

f,k is also a module over B(x)
f

/
B(x)f (k+1) and over B(x)

f [k]. The

various modules Hµ
f,k (for different pairs (k, µ)) — over any of the previous algebras — are

pairwise non-isomorphic. When B(x)
f is semisimple, this module is simple and, conversely,

any simple B(x)f –module is isomorphic to one of the Hµ
f,k’s.
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In addition, we prove now something more, namely that the semisimple quotient of Hµ
f,k

is always simple: indeed, it is the unique simple B(x)f [k;µ]–module (by the way, notice that

H
(f−2k)
f,k = Hf,k ). For this we need a closer description of the relationship among B(x)

f [k;µ]

and Hµ
f,k . Recall that Hµ

f,k := Mµ ⊗Hf,k , so H
µ
f,k is spanned by tensors mµ ⊗ h with

m ∈ Mµ and h ∈ Hf,k ; moreover, C
[
Sf−2k

] ∼= ⊕µ⊢(f−2k)Iµ and Iµ ∼= Mµ ⊗Mµ as

Sf–bimodules, hence there exists a monomorphism Ξµ : Mµ ⊗Mµ ↪−→ C
[
Sf−2k

]
. The

following statement (whose proof is trivial from definitions) gives the required description.

Lemma 2.13. Consider on the space Hµ
f,k ⊗ H

µ
f,k the structure of B(x)

f –bimodule given

by (b1, b2).(h1, h2) :=
(
b1.h2,Ω(b2).h2

)
, and on B(x)f [k;µ] the natural structure of B(x)

f –

bimodule induced by the left and right regular representations of B(x)f . Then there exists an

isomorphism of B(x)f –bimodules and of B(x)
f [k;µ]–bimodules

Φµ : Hµ
f,k ⊗H

µ
f,k

∼=−−−→B(x)f [k;µ]

given by (m1 ⊗ h1)⊗ (m2 ⊗ h2) 7→ �
(
Ξµ(m1 ⊗m2)⊗ h1 ⊗ h2

)

Lemma 2.14. Let A be an algebra, and let M be a left and right A–module such that
these two structures are isomorphic, i.e. there exists a linear map f : M → M such that
f(a.m) = f(m).a for all a ∈ A, m ∈ M . Suppose that the semisimple quotient of A is
simple, and that A ∼= M ⊗M as A–bimodules when A is given the natural A–bimodule
structure and M ⊗ M is given the bimodule structure given by (a1, a2).(m1 ⊗ m2) :=
(a1.m1)⊗ (m2.a2) . Then the semisimple quotient of M (both as a left or right A–module)
is simple.

Proof. Let RA be the radical of A: we know it is the same if we take it to be the radical of A
as a left or right A–module. Similarly, since the left and right structures of A–module onM
are isomorphic, the left and right radicals of M are equal; then we denote this ”common”
radical by RM . Now consider the epimorphism A ∼=M⊗M −� M

/
RM⊗M

/
RM defined

by m1 ⊗m2 7→ (m1 mod RM )⊗ (m2 mod RM ) . Since M
/
RM ⊗M

/
RM is semisimple

— as an A–bimodule — this epimorphism factors through A
/
RA ; by hypothesis the latter

is simple, thus the same is true for M
/
RM ⊗M

/
RM , hence in turn for M

/
RM , too. �

Corollary 2.15. The semisimple quotient of Hµ
f,k is simple.

Proof. Apply Proposition 2.12, Lemma 2.13, and Lemma 2.14 with A = B(x)f [k;µ] and

M = Hµ
f,k . �
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§3 Brauer algebras in Invariant Theory

3.1 Brauer algebras and centralizer algebras. In this section we explain the link
between Brauer algebras and the centralizer algebras of §1, and we introduce the basic
tools for proving our main result.

Theorem 3.2 (cf. [Br]). There exist C–algebra epimorphisms uniquely given by

πV : B(n)
f −−−� EndO(V )

(
V ⊗f

)
πW : B(−2n)

f −−−� EndSp(W )

(
W⊗f

)
dσ 7→ σ , hp,q 7→ τp,q dσ 7→ sgn(σ)σ , hp,q 7→ −τp,q

When n ≥ f these are isomorphisms.

3.3 Diagrammatic minors and diagrammatic Pfaffians. A simple reformulation
of Proposition 1.6 will answer the question of what is the kernel of the epimorphisms of
Theorem 3.2. To begin with, define vector space isomorphisms

ΦV : AO
f

∼=−−−→B(n)f ΦW : ASp
f

∼=−−−→B(−2n)
f

x i, j 7→ di, j x i, j 7→ ε(di, j) · di, j

Then, getting through the various maps involved we find that the following diagrams of
linear maps are commutative

AO
f

ΦV−−−−→ B(n)
f

αV

y yπV((
V ⊗2f

)∗)O(V )

−−−−→
ΨV

EndO(V )

(
V ⊗f

)
ASp

f

ΦW−−−−→ B(−2n)
f

αW

y yπW((
W⊗2f

)∗)Sp(W )

−−−−→
ΨW

EndSp(W )

(
W⊗f

)
Now come back to Proposition 1.6, and look for instance to the orthogonal case. The

kernel of αV is claimed to be the intersection of AO
f with the idealMinn+1 of A

O generated

by the minors of order n+ 1 of the symmetric matrix
(
xij
)2f
i,j=1

: more precisely, the last

part of the statement ensures that Ker(αV ) is exactly the C–span of the elements of type

µn+1xin+2jn+2
xin+3jn+3

· · ·xif jf , where µn+1 is any minor of
(
xij
)2f
i,j=1

of order n+1 such

that all rows involved have indices different from those of the columns involved. From the
expression of the determinant we get that Ker(αV ) is the C–span of the elements of type∑

σ∈Sn+1

sgn(σ) · xi1jσ(1)
xi2jσ(2)

· · ·xin+1jσ(n+1)
· xin+2jn+2xin+3jn+3 · · ·xif−1jf−1

xif jf (3.1)

with {i1, . . . , in+1} ∪ {j1, . . . , jn+1} ∪ {in+2, . . . , if} ∪ {jn+2, . . . , jf} = {1, 2, 3, . . . , 2f} .
Similarly, in the symplectic case Proposition 1.6 tells us that Ker(αW ) is the C–span

of the elements of type ϖn+1xin+2jn+2xin+3jn+3 · · ·xif jf , where ϖn+1 is any Pfaffian of(
xij
)2f
i,j=1

of order 2n + 2 such that all rows involved have indices different from those
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of the columns involved. Exploiting the explicit expression of the Pfaffian we get that
Ker(αW ) is the C–span of the elements of type

∑
h1<k1,h2<k2,...
h1<h2<h3<···

sgn

(
1 2 . . . 2f−1 2f
h1 k1 . . . hf kf

)
·xh1k1xh2k2 · · ·xhn+1kn+1 ·xin+2jn+2 · · ·xif jf (3.2)

with {h1, . . . , hn+1} ∪ {k1, . . . , kn+1} ∪ {in+2, . . . , if} ∪ {jn+2, . . . , jf} = {1, 2, 3, . . . , 2f} .
This leads us to the following

Definition 3.4 (a) We call (diagrammatic) minor of order r (∈ N+) every element

of B(x)f which is the image through ΦV of an element of type (3.1) with r instead of n+1.

(b) We call (diagrammatic) Pfaffian of order 2r (∈ 2N+) every element of B(x)
f

which is the image through ΦW of an element of type (3.2) with r instead of n+ 1.
(c) If X is any given (diagrammatic) minor or Pfaffian, we call fixed edge of X any

edge which occurs the same in all the diagrams occurring in the expansion of X ; we call
fixed vertex of X any vertex (in Vf ) belonging to a fixed edge of X ; we call fixed part
of X the datum of all fixed edges and all fixed vertices of X ; we call moving part of X
the datum of all vertices (in Vf ) which are not fixed in X along with all edges which occur
in any diagram in the expansion of X and which are not fixed.

Remarks 3.5. (a) From definitions and Proposition 1.6, it directly follows that a
diagrammatic minor is an alternating sum of f–diagrams: to be precise, if the minor has
order r then it is an Sr–antisymmetric sum of f–diagrams. On the other hand, because
of the sign entering in the definition of αW one has that all diagrams entering in the
expansion of a diagrammatic Pfaffian appears there with like sign: that is, up to sign each
diagrammatic Pfaffian is just a simple sum of f–diagrams.

(b) If δr is a minor of order r, the 2r vertices in its moving part may be partitioned
into two sets I, J (each of r elements) so that, looking at all the diagrams occurring in
the expansion of δr , no vertex in one of these sets is ever joined to a vertex in the same
set, but it is joined to each of the vertices in the other set. Via ΦV , the sets I and J

correspond to the set of rows and the set of columns (or viceversa) in the matrix
(
xij
)2f
i,j=1

on which the minor corresponding to δr is computed: therefore, in the sequel we shall use
expressions like ”v is a row vertex and w is a column vertex” to mean in short that v and
w are moving vertices which belong one to I and the other to J , or ”v and w are both row
vertices” or ”column vertices” to mean that they are moving vertices which both belong
to I or both belong to J . In fact, the minor δr is determined uniquely up to sign by: (I)
assigning its fixed part; (II) assigning the sets I and J , both endowed with a labelling of
their vertices by {1, 2, . . . , r}; (III) joining every vertex in one set — say I — to a vertex
in the other set — say J — according to a permutation σ ∈ Sr , so to get an f–diagram
d(σ); (IV) adding up the diagrams d(σ) with coefficient sgn(σ), for all σ ∈ Sr : this finally
gives ±dr (the sign depends on the choice of the labelling of the vertices in I and in J ).

(c) The operation in (III) may be better understood as follows: first join every vertex in
I with the vertex in J labelled with the same number: this gives the diagram d(id) , which
outside the fixed part is given by the r edges {i1, j1}, . . . , {ir, jr} (with {i1, . . . , ir} = I ,
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{j1, . . . , jr} = J ); second, let Sr act on J , and let d[σ] be the diagram which is equal to
d(id) in the fixed part and outside it is given by the r edges

{
i1, σ(j1)

}
, . . . ,

{
ir, σ(jr)

}
:

then d[σ] = d(σ) . Therefore we can also write δr as an Sr–antisymmetric sum

δr =
∑
σ∈Sr

sgn(σ)d(σ) =
∑
σ∈Sr

sgn(σ)d[σ] =
∑
σ∈Sr

sgn(σ)σ.d[id] (3.3)

(d) The counterpart for Pfaffians of (b) and (c) above is that every Pfaffian of order 2r
is the sum of all diagrams obtained by assigning the fixed part and joining the 2r vertices
in the moving part with r edges in all possible ways.

Examples 3.6. (a) In the picture below we represent the diagrammatic minor

ΦV
−1
(
µ3x1+2−x4−5−

) (
∈ B(x)5

)
, where µ3 is the minor (of size 3) of the matrix

(
xij
)10
i,j=1

on the rows 2, 4, 8 and the columns 6, 3, 5, making use (as we shall often do, with f instead
of 5) of the identifications i = i+, j + 5 = j− for all i, j = 1, . . . , 5.

The fixed part of this minor is the set of edges
{
{1+, 2−}, {4−, 5−}

}
and the set of

vertices {1+, 2−, 4−, 5−}; the moving part is given by the vertices 2+, 4+, 3− — which
correspond to rows (or columns) — and 1−, 3+, 5+ — which correspond to columns (or
rows).

(b) The next picture represents the (unique, up to sign) Pfaffian of order 6 in B(x)
3 ;

here again we used the identifications i = i+, j + 3 = j− for all i, j = 1, . . . , 3 (note that
here there is no fixed part because the order of the Pfaffian equals 2f).

The importance of diagrammatic minors and Pfaffians lies in the following reformulation
of Proposition 1.6 (via §3.3):

Theorem 3.7. (a) The kernel of πV : B(n)f −−−� EndO(V )

(
V ⊗f

)
is the C–span of the

set of all diagrammatic minors in B(n)
f of order n+ 1.

(b) The kernel of πW : B(−2n)
f −−−� EndSp(W )

(
W⊗f

)
is the C–span of the set of all

diagrammatic Pfaffians in B(−2n)
f of order 2(n+ 1).

We finish this section by proving some combinatorial results on diagrammatic minors
and Pfaffians, to be used in §4.
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Lemma 3.8. (a) Let δr (∈ B(x)f ) be a diagrammatic minor of order r; let Iℓ, resp. It,

be the set of moving row, resp. column, vertices in {1+, 2+, . . . , f+} (the upper row of δr)
and assume ℓ + t ≥ r (that is, the moving part of δr is not larger down than up). Then
δr may be written as

δr = AltIℓ AltIt ·
m∑
j=0

∑
(pj,i,qj,i)∈Vj

(−1)j hpj,1qj,1hpj,2qj,2 · · ·hpj,jqj,jd (3.4)

where m is a suitable nonnegative integer, AltIℓ , resp. AltIt , denotes the antisymmetrizer
(in C

[
Sf

]
) on Iℓ, resp. on It, the Vj’s are suitable subsets of Iℓ × It , and d is a suitable

f–diagram.

(b) Let ϖr (∈ B(x)
f ) be a diagrammatic Pfaffian of order 2r; let It be the subset of

moving vertices in {1+, 2+, . . . , f+} (the upper row of ϖr), and assume t ≥ r (that is, the
moving part of ϖr is not larger down than up). Then ϖr may be written as

ϖr = SymIt ·
m∑
j=0

∑
(pj,i,qj,i)∈Vj

(
(h+ j)! 2h+j

)−1
hpj,1qj,1hpj,2qj,2 · · ·hpj,jqj,jd (3.5)

where m is a suitable nonnegative integer, SymIt denotes the symmetrizer (in C
[
Sf

]
) on

It, the Vj’s are suitable subsets of It , d is a suitable f–diagram, and h is the number of
bars on vertices of It in d.

Proof. (a) As a matter of notation, for all h ∈ {0, 1, . . . , [f/2]} let δ
(h)
r be the part of δr

which lies in B(x)
f (h)\B(x)

f (h+1) , i.e. the algebraic sum of those diagrams in the expansion

of δr (with the signs they have therein) which have exactly h bars in the upper row.
Among the diagrams occurring in the expansion of δr, pick one which has the least

possible number of bars — to be k, if δr ∈ B(x)f (k) \ B(x)f (k + 1) — and call it d: then we

have exactly δ
(k)
r = (AltIℓ AltIt).d .

If ℓ = 0 or t = 0 we have finished, for in this case δr = δ
(k)
r . Otherwise, each of the

remaining diagrams in δr has at least one bar joining a vertex in Iℓ with a vertex in It. Let
now d′ be one of the remaining diagrams (if any) having exactly one bar of the previous
type; we can choose d′ so that it is equal to d but on the vertices p+ and q+ of this bar
and on those vertices u− and v− which in (the lower row of) d are joined to p+ and q+:
but this simply means that d′ = hp,qd : then −(AltIℓ AltIt).d′ = (AltIℓ AltIt).(−hp,qd)

is the algebraic sum of those diagrams in the expansion of δ
(k+1)
r which have the bar

u− v− . Similarly, the other diagrams in δ
(k+1)
r can be obtained by multiplying d

on the left by other suitable hp′,q′ ’s (one each time) for different p′ and q′; so finally we

find that δ
(k+1)
r = AltIℓ AltIt ·

∑
(p1,1,q1,1)∈V1

(−1)hp1,1q1,1d , where V1 is a suitable subset

of Iℓ × It . The same procedure applies if we want to describe δ
(k+j)
r , for greater j : the

only difference is that we have to multiply by exactly j different terms hp,q, choosen in
several different ways; thus we find that

δ(k+j)
r = AltIℓ AltIt ·

∑
(pj,i,qj,i)∈Vj

(−1)jhpj,1qj,1hpj,2qj,2 · · ·hpj,jqj,jd ∀ j = 0, 1, . . . ,m
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where Vj is a suitable subset of Iℓ × It and k + m is the maximum number of bars
appearing in the upper row of any diagram in the expansion of δr. Finally, summing up
over j gives us claim (a).

(b) Like in the proof of (a), for all h ∈ {0, 1, . . . , [f/2]} we define ϖ
(h)
r to be the part of

ϖr which lies in B(x)
f (h) \ B(x)f (h+1) , that is the sum of those diagrams in the expansion

of ϖr which have exactly h bars in the upper row.
Again, choose a diagram d in the expansion of ϖr which has the least possible number

of bars, to be k if δr ∈ B(x)f (k) \ B(x)f (k + 1) . Then permuting in all possible ways the
vertices in It we get all the diagrams in the expansion of ϖr which have exactly k bars in
the upper row; but we get each of them exactly as many times as the cardinality of the
stabilizer St of the ”bar structure” of It; this stabilizer is generated by the stabilizer — a
copy of S2 — of each bar on It (in d) and by the whole symmetric group acting on the

set of these bars: indeed, we have St ∼= S2
×h × Sh (a hyperoctahedral group) where h is

the number of bars on vertices in It in the diagram d, so that
∣∣St∣∣ = 2h · h! . The upshot

is that ϖ
(k)
r =

(
h! 2h

)−1 · SymIt .d . We proceed similarly with the other diagrams in ϖr:

namely, each of those in ϖ
(k+j)
r can be obtained by multiplying d on the left by j suitable

hp′,q′ ’s, the vertices p′ and q′ being always choosen inside It; then using the commutation

relations of Theorem 2.10 we can express δ
(k+j)
r as

δ(k+j)
r =

(
(h+ j)! 2h+j

)−1 ·SymIt ·
∑

(pj,i,qj,i)∈Vj

hpj,1qj,1hpj,2qj,2 · · ·hpj,jqj,jd ∀ j = 0, 1, . . . ,m

where Vj is a suitable subset of It) and k+m is the maximum number of bars appearing
in the upper row of any diagram in the expansion of ϖr. Finally summing up over j we
get the claim (b). �

Example : if δ3 is the minor in Example 3.6(a), then an expression of type (3.4) is

for instance δ3 = AltIℓAltIt ·
(
1 − h2+3+

)
d where Iℓ =

{
2+, 4+

}
, It =

{
5+
}
, and

d is the first diagram in the expansion of δ3 (as it is drawn there); similarly, if ϖ3 is
the Pfaffian in Example 3.6(b), then an expression of type (3.5) is for instance ϖ3 =
SymIt ·

(
1 + 2−1(h1+2+ + h1+3+ + h2+3+)

)
d where It =

{
1+, 2+, 3+

}
and d is the last

diagram in the first row of the expansion of ϖ3 (as it is drawn there).

Lemma 3.9. (a) Given n ∈ N+ , let d be an f–diagram, and δn+1 (∈ B(n)f ) a minor of

order n + 1. Then if d has a bar r− s− , resp. r+ s+ , and r+ and s+,
resp. r− and s−, are moving vertices in δn+1, then d · δn+1 = 0 , resp. δn+1 · d = 0 .
Similarly, if j ∈ Jf,k is an (f, k)–junction (for some k) having a bar r s and r−

and s− are moving vertices in δn+1, then δn+1.j = 0 in Hµ
f,k for all µ ⊢ (f − 2k).

(b) Given n ∈ N+ , let d be an f–diagram, and ϖn+1 (∈ B(−2n)
f ) a Pfaffian of order

2(n+1). Then if d has a bar r− s− , resp. r+ s+ , and r+ and s+, resp. r−

and s−, are moving vertices in ϖn+1, then d ·ϖn+1 = 0 , resp. ϖn+1 · d = 0 . Similarly,
if j ∈ Jf,k is an (f, k)–junction (for some k) having a bar r s and r− and s− are
moving vertices in ϖn+1, then ϖn+1.j = 0 in Hµ

f,k for all µ ⊢ (f − 2k).
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Proof. (a) Assume for the moment that the claim about δn+1 · d is proved: then the one
about d · δn+1 follows at once applying Ω.

As for the claim about the junction j, it follows from the one about diagrams by thinking

at j as j = ubs(d) for some f–diagram d. Indeed, the definition of the action of B(x)
f on

Hf,k is given in such a way that, if we pick any diagram d ∈ Df , then ubs
([
d′ ⋆ d

])
=

d′ ⋆ ubs(d) , and C
(
d′,d

)
= C

(
d′,ubs(d)

)
(with notation of §§2.2, 2.3, 2.11); therefore,

for a given junction j we pick any diagram such that j = ubs(d) : then δn+1 · d = 0 in

B(n)
f implies also δn+1.j = 0 in Hµ

f,k for any µ, q.e.d.

The upshot is that we only have to show that δn+1 · d = 0 .

Using Remark 2.7(b) we reduce to the case of d ∈ Df,1 , that is r+ s+ is the sole
upper bar of d. There are two cases to consider.

Case I :
∣∣{r−, s−} ∩ (I ∪ J)∣∣ = 2 with {r−, s−} ⊆ I or {r−, s−} ⊆ J : in other words,

r− and s− are both row (or column) vertices.

In this case, note that the diagrams d(σ) = d[σ] (using notation of Remarks 3.5(c))
occurring in δn+1 may be partitioned in (n+1)!/2 pairs, by pairing d[σ] with d[(r− s−)σ],
where (r− s−) is the transposition of r− and s−; then multiplying d[σ] or d[(r− s−)σ] with
d gives exactly the same diagram (the picture below might be enligthening).

fixed part moving part fixed part fixed part moving part fixed part

case of d[σ] ∗ d case of d[(r− s−)σ] ∗ d

but sgn
(
(r− s−)σ

)
= −sgn(σ) , so the two products above give to the sum expressing

δn+1 · d a like contribution with unlike sign: therefore adding up all the pairs we get at
last δn+1 · d = 0 .

Case II :
∣∣{r−, s−} ∩ (I ∪ J)∣∣ = 2 with r− ∈ I, s− ∈ J or r− ∈ J , s− ∈ I : in other

words, both r− and s− are moved in δn+1 and one of them is a row vertex whilst the other
is a column vertex, say r− ∈ I and s− ∈ J .

Consider a σ̄ ∈ Sn+1 such that r− and s− are joined in d
[
σ̄
]
= σ̄.d[id]: when computing

the product d
[
σ̄
]
· d the bar r+ s+ in the upper row of d matches the bar

r− s− in the lower row of d
[
σ̄
]
, so that C

(
d
[
σ̄
]
,d
)
≥ 1 (notation of §2.3), hence

d
[
σ̄
]
· d = nzd′ for some z ∈ N+ and some d′ ∈ Df .

Now fix in d
[
σ̄
]
an edge h k in the moving part of δn+1 which is different
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from r− s− , with h ∈ I, k ∈ J , say. Then look at the diagram d
[
(s− k) σ̄

]
=

(s− k) σ̄.d[id] , which also occurs in the expression of δn+1 as Sn+1–antisymmetric sum of
type (3.3): this diagram is equal to d

[
σ̄
]
but for the configuration on the four vertices r−,

s−, h, k ; in particular now r− is joined to k and s− is joined to h, so that we get

d
[
(s− k) σ̄

]
∗ d = d

[
σ̄
]
∗ d , C

(
d
[
(s− k) σ̄

]
,d
)
= C

(
d
[
σ̄
]
,d
)
− 1 ;

(the picture below illustrates the situation we are dealing with)

fixed part moving part fixed part fixed part moving part fixed part

case of d
[
σ̄
]
∗ d case of d

[
(s− k) σ̄

]
∗ d

the upshot is that

d
[
(s− k) σ̄

]
· d = nz−1d′ = n−1 d

[
σ̄
]
· d , or σ̄.d[id] · d = n (s− k) σ̄.d[id] · d ;

in particular, this result is independent of the choice of h k . This operation
can be done as many times as are the choices of the edge h k in the moving
part of δn+1, that is exactly n times; and each time, one has sgn

(
(s− k) σ̄

)
= −sgn

(
σ̄
)
.

Thus, when we expand the sum in right hand side of δn+1·d =
∑

σ∈Sn+1
sgn(σ)σ.d[id]·d

in terms of the basis Df of B(n)
f , if a diagram d′ occurs then it occurs with a coefficient

(actually, an integer number) which is a multiple of
(
n− (1 + · · ·+ 1︸ ︷︷ ︸

n

)
)
= 0 ; therefore we

get δn+1 · d = 0 , q.e.d.

(b) The proof resembles that of case (a); in particular, it is enough to prove the state-
ment about ϖn+1 · d , for then applying Ω will give the other one too; and the claim
involving junctions again follows from the one about diagrams, in the same way as in (a).

Like for (a), we can assume d ∈ Df,1 , so r+ s+ is the sole upper bar of d.
Let r− < s− , say. Among the diagrams in the expansion of ϖ2(n+1), there are some

which contain the bar r− s− ; pick one of these, call it d′.
When making the product d′ · d the two bars r+ s+ and r− s− match

each other to form a cycle, which gives a contribution (−2n) to the coefficient (−2n)C(d
′,d)

in front of d′ ∗ d. Now, d′ has exactly n+ 1 moving edges (i.e. edges which are not fixed
in ϖ2(n+1)): in particular there are exactly n moving edges different from r− s− .

So let h k be one of the latter edges; then among the diagrams in ϖ2(n+1)
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we find exactly two other diagrams — say d′
+, d

′
− — which have the same configuration

as d′ but on the four vertices r−, s−, h, k : one diagram, say d′
+ , has the pair of edges

{h, r−}, {k, s−}, and the other, say d′
− , has the pair of edges {h, s−}, {k, r−} (note that

we do not specify the relative positions of the four vertices involved); thus we have

d′
+ ∗ d = d′

− ∗ d = d′ ∗ d

as the pictures below show:

fixed part moving part fixed part

case of d′ ∗ d

fixed part moving part fixed part fixed part moving part fixed part

case of d′
+ ∗ d case of d′

− ∗ d

Letting h k range among the nmoving edges of d′ different from r− s−,
we find the same summand d′ ∗ d in ϖ2(n+1) once with coefficient −2n and exactly 2 · n
times with coefficient +1 , so the final coefficient is zero. This operation takes care of all
the diagrams occurring in ϖ2(n+1), hence we conclude that ϖ2(n+1) · d = 0 , q.e.d. �
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§4 The Littlewood’s restriction rules

4.1 Schur’s duality and multiplicities. When considering the GL(U)–action on
U⊗f (for a complex vector space U ) by Schur’s duality U⊗f splits as

U⊗f ∼=
⊕
λ⊢f

λt
1≤dim(U)

Vλ ⊗Mλ (4.1)

as a GL(U)×EndGL(U)

(
U⊗f

)
–module, where Vλ is the simple polynomial GL(U)–module

attached to λ andMλ is the simple EndGL(U)

(
U⊗f

)
–module attached to λ; it is known that

the centralizer algebra EndGL(U)

(
U⊗f

)
is C

[
Sf

]
, thus Mλ is just the simple Sf–module

we are used to consider. Similarly, Schur’s duality yields a decomposition

V ⊗f ∼=
[f/2]⊕
k=0

⊕
µ⊢(f−2k)

µt
1+µt

2≤n

Uµ ⊗N+
µ (4.2)

as an O(V )× EndO(V )

(
U⊗f

)
–module, where Uµ is the simple O(V )–module attached to

µ and N+
µ is the simple EndO(V )

(
U⊗f

)
–module attached to µ, and a decomposition

W⊗f ∼=
[f/2]⊕
k=0

⊕
µ⊢(f−2k)

µt
1≤n

Wµ ⊗N−
µ (4.3)

as an Sp(W )×EndSp(W )

(
W⊗f

)
–module, whereWµ is the simple Sp(W )–module attached

to µ and N−
µ is the simple EndSp(W )

(
W⊗f

)
–module attached to µ. Notice that via πV ,

resp. πW , the modules N+
µ , resp. N−

µ , are also B(n)
f –modules, resp. B(−2n)

f –modules.

Lemma 4.2.
[
Vλ : Uµ

]
=
[
N+

µ :Mλ

]
and

[
Vλ :Wµ

]
=
[
N−

µ :Mλ

]
. In other words, if

Vλ

∣∣∣GL(V )

O(V )

∼=
[f/2]⊕
k=0

⊕
µ⊢(f−2k)

Dλ
µ Uµ and N+

µ

∣∣∣B(n)
f

C[Sf ]

∼=
⊕
λ⊢f

Ĉ+
λ,µMλ ,

Vλ

∣∣∣GL(V )

Sp(W )

∼=
[f/2]⊕
k=0

⊕
µ⊢(f−2k)

Eλ
µ Wµ and N−

µ

∣∣∣B(−2n)
f

C[Sf ]

∼=
⊕
λ⊢f

Ĉ−
λ,µMλ ,

then Dλ
µ = Ĉ+

λ,µ , Eλ
µ = Ĉ−

λ,µ for all λ, µ.

Proof. This is standard. Comparing (4.1) with U = V and (4.2) gives⊕
λ,µ

Dλ
µ Uµ ⊗Mλ

∼=
⊕
λ

Vλ ⊗Mλ
∼= V ⊗f ∼=

⊕
µ

Uµ ⊗N+
µ
∼=
⊕
µ,λ

Uµ ⊗ Ĉ+
λ,µMλ

where the indices λ and µ have to range in the proper sets; this forces Dλ
µ = Ĉ+

λ,µ , q.e.d.

The like is for the other identity, using (4.1) with U =W and (4.3). �
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Lemma 4.3. As a C
[
Sf

]
-module, Hµ

f,k splits into

Hµ
f,k

∣∣∣B(x)
f

C [Sf ]

∼=
⊕
λ⊢f

Cλ
µ Mλ with Cλ

µ =
∑
σ⊢2k

σ has even rows

cλµ,σ

where cλµ,σ is the Littlewood-Richardson coefficient expressing the multiplicity of Mλ in

the decomposition of Ind
Sf

Sf−2k×S2k

(
Mµ ⊗Mσ

)
.

Proof. A simple analysis of the definition shows that

Hµ
f,k

∣∣∣B(x)
f

C [Sf ]

∼= Ind
Sf

Sf−2k×S2k

(
Mµ ⊗H2k,k

)
; (4.4)

(where H2k,k is defined as in §2.2). On the other hand, we have an isomorphism of S2k–
modules

H2k,k
∼= IndS2k

S ×k
2

(
M(2)

⊗k
)

(4.5)

(whereM(2) is the trivial representation of S2): to realize such an isomorphism, one simply
has to map the (2k, k)–junction · · · · · · (as an element of H2k,k) to any

non-zero element of M(2)
⊗k. Now, it is known (cf. Proposition 1.5) that

IndS2k

S ×k
2

(
M(2)

⊗k
)
∼=

⊕
σ⊢2k

σ has even rows

Mσ

thus (4.4) and (4.5) together yield

Hµ
f,k

∣∣∣B(x)
f

C [Sf ]

∼=
∑
σ⊢2k

σ has even rows

Ind
Sf

Sf−2k×S2k

(
Mµ ⊗Mσ

)
∼=
⊕
λ⊢f

∑
σ⊢2k

σ has even rows

cλµ,σ ·Mλ

which gives the claim. �

To be short, from now on we use the notation N ′
µ := Hµ

f,k for all k = 0, 1, . . . , [f/2]

and all µ ⊢ (f − 2k) .
The next result ”locates” the (semi)simple quotient of N ′

µ (cf. Corollary 2.15).

Proposition 4.4. There exist a B(n)
f –module epimorphisms Θ : N ′

µ −� N+
µ , resp. a

B(−2n)
f –module epimorphism Θ : N ′

µ −� N−
µt . In particular N+

µ , resp. N−
µt , is the unique

simple B(n)
f [k;µ]–module, resp. B(−2n)

f [k;µ] (for the proper k).

Proof. For the proof we need to describe N±
µ : for this we can resume the analysis of [GP].

Introduce the following subspaces of V ⊗f (for all k ∈
{
0, 1, . . . , [f/2]

}
)

T 0
(
V ⊗f

)
:=
∪
p ̸=q

Ker
(
Φp,q

)
, T k

(
V ⊗f

)
:=

∑
i1<j1,...,ik<jk

Ψi1,j1Ψi2,j2 · · ·Ψik,jk

(
T 0
(
V ⊗(f−2k)

))
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Then it is known that T 0
(
V ⊗f

)
, resp. T 0

(
W⊗f

)
, splits into

T 0
(
V ⊗f

) ∼= ⊕
µ⊢f

µt
1+µt

2≤n

Uµ ⊗Mµ , resp. T 0
(
W⊗f

) ∼= ⊕
µ⊢f
µt
1≤n

Wµ ⊗Mµ (4.6)

as a module over O(V )× B(n)f , resp. Sp(V )× B(−2n)
f .

Now consider the space of invariants
((
V ⊗2k

)∗)O(V )

: we have ψV
⊗k ∈

((
V ⊗2k

)∗)O(V )

,

and in fact
((
V ⊗2k

)∗)O(V )

= C
[
S2k

]
.ψV

⊗k. Similarly,
((
W⊗2k

)∗)Sp(W )

= C
[
S2k

]
.ψW

⊗k

in the symplectic case.
From definitions we get T k

(
V ⊗f

)
= C

[
Sf

]
.T 0
(
V ⊗(f−2k)

)
: then using (4.6) gives

T k
(
V ⊗f

) ∼= ⊕
µ⊢f

µt
1+µt

2≤n

Uµ ⊗

(
C
[
Sf

]
.

(
Mµ ⊗

((
V ⊗2k

)∗)O(V )
))

,

resp. T k
(
W⊗f

) ∼= ⊕
µ⊢f
µt
1≤n

Wµ ⊗

(
C
[
Sf

]
.

(
Mµ ⊗

((
W⊗2k

)∗)Sp(W )
))

.

Now, it is also known that

V ⊗f ∼=
[f/2]⊕
k=0

⊕
µ⊢(f−2k)

µt
1+µt

2≤n

T k
(
V ⊗f

)
, W⊗f ∼=

[f/2]⊕
k=0

⊕
µ⊢(f−2k)

µt
1≤n

T k
(
W⊗f

)
,

hence comparing with (4.2) and (4.3) we find

N+
µ
∼= C

[
Sf

]
.

(
Mµ⊗

((
V ⊗2k

)∗)O(V )
)
, N−

µ
∼= C

[
Sf

]
.

(
Mµ⊗

((
W⊗2k

)∗)Sp(W )
)
. (4.7)

On the other hand, there exists a natural isomorphism of S2k–modules H2k,k
∼= AO

f (just

map each (2k, k)–junction to the unique monomial xi1j1xi2j2 · · ·xikjk (see §1) such that

ih jh is a bar of the junction); by composing it with αV : AO
f −→

((
V ⊗2f

)∗)O(V )

(cf. Proposition 1.6) we get an epimorphism

θ : H2k,k −−−→
((
V ⊗2f

)∗)O(V )

given by θ
(

· · · · · ·
)
:= ψ⊗f

V

which is indeed one of S2k–modules and also of B(n)
2k –modules.
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The same construction works in the symplectic case, but for the following fact: the ac-

tion of S2k on W⊗2k through B(−2n)
2k (via S2k ⊂ D2k,0 ⊂ B(−2n)

2k ) coincides with the stan-
dard permutation action twisted by the alternating representationM(1,1,...,1︸ ︷︷ ︸

2k

): so repeating

the previous analysis yields an epimorphism of B(−2n)
2k –modules

θ : H2k,k −→
((
W⊗2f

)∗)Sp(W )

⊗M(1,...,1︸︷︷︸
2k

) given by θ
(

· · · · · ·
)
:= ψ⊗f

V ⊗ 1

where 1 is a basis vector of the sign representation M(1,1,...,1) .

Now we can define uniquely a morphism of C
[
Sf

]
–modules by

Θ : Ind
Sf

Sf−2k×S2k

(
T 0
(
V ⊗(f−2k)

)
⊗H2k,k

)
−−−� T k

(
V ⊗f

)
, v ⊗ h 7→ v ⊗ θ(h)

(v ∈ T 0
(
V ⊗(f−2k)

)
, h ∈ H2k,k); this is indeed an epimorphism of O(V ) × B(n)f –modules.

Then using again (4.4), (4.6) and (4.7) we get that Θ induces an epimorphism of B(n)
f –

modules

Θ : N ′
µ
∼= Ind

Sf

Sf−2k×S2k

(
Mµ ⊗H2k,k

)
−−−� C

[
Sf

]
.

(
Mµ ⊗

((
V ⊗2k

)∗)O(V )
)
∼= N+

µ

given by Θ
(
m⊗ h

)
:= m⊗ θ(h) (∀ m ∈Mµ , h ∈ H2k,k)

which fulfills the claim. The same argument — mutatis mutandis — in the symplectic case

gives an epimorphism of B(−2n)
f –modules

Θ : N ′
µ
∼= Ind

Sf

Sf−2k×S2k

(
Mµ ⊗H2k,k

)
−� C

[
Sf

]
.

(
Mµt ⊗

((
W⊗2k

)∗)Sp(W )
)
∼= N−

µt

given by Θ
(
m⊗ h

)
:= m⊗ θ(h) (∀ m ∈Mµ , h ∈ H2k,k)

where we consider Mµ and Mµt as sharing the same vector space as socle (for instance, we
can fix any identification Mµt ∼= M(1,1,...,1︸ ︷︷ ︸

f

) ⊗Mµ so that m ∼= 1 ⊗m for all m ∈ Mµ ).

The proof is complete. �

Remark : in the ”stable case” (n ≥ f) the epimorphisms Θ in the previous Proposition
are isomorphisms: more precisely, they are the inverse of the isomorphisms ϕ given in [GP],
Theorem 7.5.

Finally, we are ready for the key step.

Theorem 4.5. Retain notations of Lemma 4.2 and Lemma 4.3. Then

Ĉ+
λ,µ = Cλ

µ for all λ ⊢ f such that λt1 + λt2 ≤ n .(a)

Ĉ−
λ,µ = Cλt

µt for all λ ⊢ f such that λt1 ≤ n .(b)
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Proof. The idea of the proof is to show that the multiplicity of Mλ is the same in both
sides of the epimorphism Θ : N ′

µ −� N+
µ or Θ : N ′

µ −� N−
µt in Proposition 4.4,

for then the claim follows from Lemma 4.3; to this end, it is enough (together with an
additional remark for case (b)) to prove that for all λ as in the claim the kernel of Θ has
no isotypical components — as a C

[
Sf

]
–module — of type λ: in other words,

Ker
(
Θ : N ′

µ −� N+
µ

)
⊆

⊕
λ⊢f

λt
1+λt

2>n

Cλ
µ Mλ , Ker

(
Θ : N ′

µ −� N−
µt

)
⊆
⊕
λ⊢f
λ1>n

Cλ
µ Mλ . (4.8)

From Proposition 2.12 and Proposition 4.4 it follows that

Ker
(
Θ : N ′

µ � N+
µ

)
= Ker(πV ).N

′
µ , Ker

(
Θ : N ′

µ � N−
µt

)
= Ker(πW ).N ′

µ (4.9)

Indeed, we have N ′
µ

/
Ker

(
Θ : N ′

µ � N+
µ

) ∼= Nµ and the latter is a simple module

over EndO(V )

(
V ⊗f

)
: since EndO(V )

(
V ⊗f

) ∼= B(n)f

/
Ker

(
πV
)

we have Ker
(
πV
)
.N ′

µ ⊆
Ker

(
Θ : N ′

µ � N+
µ

)
; on the other hand, N ′

µ

/
Ker(πV ).N

′
µ is a module over B(n)f

/
Ker(πV )

∼= EndO(V )

(
V ⊗f

)
, hence it is semisimple: but then Corollary 2.15 forces it to be simple,

which in turn implies
(
N+

µ
∼=
)
N ′

µ

/
Ker

(
Θ : N ′

µ � N+
µ

) ∼= N ′
µ

/
Ker(πV ).N

′
µ and then

also Ker
(
Θ : N ′

µ � N+
µ

)
= Ker(πV ).N

′
µ , q.e.d. The symplectic case is entirely similar.

So we are reduced to study Ker
(
πV
)
.N ′

µ for (a) and Ker
(
πW
)
.N ′

µ for (b).

(a) We know that Ker(πV ) is spanned by the minors of order (n+1). Let δn+1 be one
of these minors: then it has 2(n+1) moving vertices, say r of them in the upper row and
s
(
= 2(n+ 1)− r

)
on the lower row: we have to distinguish the cases r ≥ s and r < s .

Assume that r ≥ s : then r ≥ (n+ 1) > n . Then applying (3.4) we get

δn+1.N
′
µ =

(
AltIℓ AltIt ·

m∑
j=0

∑
(pj,i,qj,i)∈Vj

(−1)j hpj,1qj,1hpj,2qj,2 · · ·hpj,jqj,jd

)
.N ′

µ ⊆

⊆
⊕
λ⊢f

λt
1+λt

2≥r

Iλ.N
′
µ ⊆

⊕
λ⊢f

λt
1+λt

2>n

Iλ.N
′
µ =

⊕
λ⊢f

λt
1+λt

2>n

(
N ′

µ

)
λ
=

⊕
λ⊢f

λt
1+λt

2>n

Cλ
µMλ

where by
(
Y
)
λ

we denote the isotypical component of type λ in any C
[
Sf

]
–module Y .

Therefore letting ∆r≥s
n+1 be the span of all the minors of order (n + 1) with r ≥ s we

conclude that ∆r≥s
n+1.N

′
µ is contained in the direct sum in the left-hand-side of (4.8), q.e.d.

Now assume that r < s : we shall prove that either we get trivial results — i.e. zero
contributions to the Ker

(
πV
)
— or we can reduce to the previous case, that is r ≥ s .

More precisely, given a junction j ∈ Jf,k (where k is such that µ ⊢ (f−2k) ) and m ∈Mµ ,
we shall prove the claim by showing that δn+1.(m⊗ j) = 0 or we can reduce to a smaller
value of s, so that an inductive argument (on s) will permit to reduce to the case r ≥ s ,
hence to conclude.

Suppose k = 0 : if δn+1 ∈ B(n)
f (1) then of course δn+1.j = 0 in Hf,k: this implies

δn+1.(m ⊗ j) = 0 in N ′
µ, hence we are done. But the hypothesis r < s ”forces” δn+1 to

belong to B(n)
f (1), so there’s nothing else to do.
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Then assume k > 0 . We have several cases to consider.

Case (a-1) : Suppose that j has a bar u v such that both u− and v− are moving

in δn+1. Then Lemma 3.9(a) yields δn+1.j = 0 in Hf,k, hence again δn+1.(m⊗ j) = 0 in
N ′

µ, and we are done.

Case (a-2) : Suppose that all bars of j match fixed vertices of δn+1 .

If all the spots of the bars (k in number) of j match vertices in the lower row of δn+1

which all belong to (fixed) bars, then δn+1 ∈ B(n)
f (h) for some h > k : indeed, the previous

assumption implies that δn+1 has at least k bars in its fixed part — both in the upper
and in the lower row — but since r < s its fixed part is ”bigger up than down”, so it has
strictly more bars up than down, whence the claim. But then δn+1 ⋆ j is an alternating
sum of junctions which all belong to Jf,k′ with k′ ≥ h > k , hence δn+1.j = 0 in Hf,k, so
we can finish like above.

Similarly, if for each bar of j the (fixed) vertices (in the lower bar of δn+1) matched by
those of this bar belong either both to bars (maybe one single bar for both vertices) — as
above — or one to a bar and the other to a vertical edge, then δn+1.j = 0 again. Indeed,
the bars whose vertices both match bars are to be treated as before; as for the others,
they can be grouped collecting together those which belong to a like path in Γ(δn+1, j)
(notation having the obvious meaning). Fix one such path Π, and let t be the total number
of bars of j involved in this path: if Π links a fixed upper vertex of δn+1 with a spot of j,
then Π also involves exactly t fixed bars of the lower row of δn+1, hence there are exactly
t ”corresponding” fixed bars in the upper row of δn+1 which in turn provide t bars in
δn+1 ⋆ j (notation having the obvious meaning); otherwise, i.e. if Π links two fixed upper
vertices of δn+1, then Π also involves exactly t − 1 fixed bars of the lower row of δn+1,
which correspond to t−1 fixed bars in the upper row providing t−1 fixed bars in δn+1 ⋆j :
but in addition the path Π itself yields a tth bar in δn+1 ⋆j . This shows that the junctions
occurring in δn+1 ⋆ j all have at least k′ bars with k′ ≥ k ; finally, since r < s we can
conclude like above that k′ > k , whence δn+1.j = 0 and δn+1.(m⊗ j) = 0 as before.

Therefore we are left with the case when there is at least one bar u v of j
such that u− and v− (fixed, in δn+1) belong to vertical edges: then we proceed as follows.
Let u− and v− be joined respectively to p+ and q+ ; then define δ′n+1 := hp,q · δn+1 . A
moment thought shows that δn+1.j = n−1 · δ′n+1.j , as the pictures below show:

fixed part moving part fixed part fixed part moving part fixed part

= n−1

(picture of δn+1.j) (picture of δ′n+1.j )

Therefore we can switch to deal with δ′n+1 instead of δn+1; by iteration of this procedure,
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we are reduced to consider the case when no bar of j matches two vertices in our minor
which both belong to vertical edges, that is we fall within the previous situation.

Case (a-3) : Thanks to the previous analysis, we can restrict to consider the case in
which at least one bar u v of j has one vertex — say u — matching a moving
vertex of δn+1 and the other — v for us — matching a fixed vertex of δn+1 .

Suppose that there are two bars û v̂ and ũ ṽ in j enjoying the previous
property, and that the fixed vertices v̂− and ṽ− are joined by a fixed bar in δn+1; then
when computing δn+1.j a path appears in Γ(δn+1.j) which links v̂ and ṽ: so the situation
is the same as if the bar v̂ ṽ were in j, hence Lemma 3.9(a) gives again δn+1.j = 0 ,
whence we conclude in the usual way.

The possibilities allowed now are the following: each bar of j has a vertex matching
a moving vertex m of δn+1 and another one matching a fixed vertex w, but if the latter
belongs to a bar (of δn+1) then the other bars of j do not match the vertex of δn+1 joined
to w.

Suppose that each bar of j meets — via some vertex w — a fixed bar of δn+1 : the
previous assumption implies that all these bars must be different; then we can do the same
analysis as in Case (a-2), but this time we have to proceed separately for each diagram
in the expansion of δn+1 (for now also the moving part is involved). Thus again we find
that each of these diagrams has at least k bars in its lower row, so like in Case (a-2) we
conclude that δn+1.(m⊗ j) = 0 .

By the last step, we can assume that at least one bar u v of j meets a fixed vertex
belonging to a (fixed) vertical edge of δn+1 . Then one easily sees that δn+1.j = n−1 δ′n+1.j ,
where δ′n+1 is a new minor of order (n + 1) whose fixed part has ”sizes” r′ = r + 1 and
s′ = s− 1 : the following picture illustrates the situation:

fixed part moving part fixed part fixed part moving part fixed part

= n−1

(picture of δn+1.j) (picture of δ′n+1.j )

Thus we are reduced to the case of a greater value of r, so applying a recursive procedure
we can end with the case r ≥ s , that we have considered (and solved) at the beginning.

(b) We can repeat almost step by step the prove we made for (a): whenever a property
of minors was required (e.g. Lemma 3.9(a)), the analogous property of Pfaffians (in the
example, Lemma 3.9(b)) holds and works as well. Here we explicit the starting point.

Let ϖ2(n+1) be a Pfaffian of order 2(n+1), let it have r, resp. s, moving vertices in the
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upper, resp. lower, row, and assume r ≥ s ; thus r ≥ (n+ 1) > n too. From (3.5) we get

ϖn+1.N
′
µt =

(
SymIt ·

m∑
j=0

∑
(pj,i,qj,i)∈Vj

(
(h+ j)! 2h+j

)−1
hpj,1qj,1hpj,2qj,2 · · ·hpj,jqj,jd

)
.N ′

µt ⊆

⊆
⊕
λ⊢f
λ1≥r

Iλ.N
′
µt ⊆

⊕
λ⊢f
λ1>n

Iλ.N
′
µt =

⊕
λ⊢f
λ1>n

(
N ′

µt

)
λ
=
⊕
λ⊢f
λ1>n

Cλ
µtMλ

Thus, if Πr≥s
2(n+1) is the span of all the Pfaffians of order 2(n+ 1) with r ≥ s we conclude

that Πr≥s
2(n+1).N

′
µ is contained in the direct sum in the right-hand-side of (4.8), q.e.d.

A second remark is necessary. As we saw during the proof of Proposition 4.4 the action

of Sf on W⊗f through B(−2n)
f (via Sf ⊂ Df,0 ⊂ B(−2n)

f ) coincides with the standard per-
mutation action twisted by the alternating representation: hence the isotypical components

of type λ (for all λ) for the Sf–action through B(−2n)
f are indeed isotypical components

of type λt with respect to the standard Sf–action, and viceversa. Thus the multiplicity
of Mλ (in N−

µ ) with respect to one action is equal to the multiplicity of Mλt with re-

spect to the other action: therefore the multiplicity
[
N−

µt :Mλ

]
when we consider on N−

µt

the standard Sf–action (that is the one we are interested in) is equal to the multiplicity[
N−

µt : Mλt

]
when we consider on N−

µt the Sf–action via B(−2n)
f (i.e. the twisted one); by

the previous analysis, if λt1 ≤ n the latter multiplicity is exactly the same as in N ′
µ, and

we can conclude. �

By the way, we notice that, thanks to Theorem 2.10 and Lemma 2.13, a simple refor-
mulation of the above proof of Theorem 4.5 yields the following

Corollary 4.6. (a) Let µ ⊢ (f − 2k) be such that µt
1 + µt

2 ≤ n . Then the radical of

the B(n)f –module Hµ
f,k is contained in the sum of all isotypical components (of Hµ

f,k as an

Sf–module) of type λ with λ ⊢ f such that λt1 + λt2 > n . Similarly, the radical of the

algebra B(n)
f [k;µ] is contained in the sum of all isotypical components (of B(n)

f [k;µ] as an

Sf × Sf–module) of type (1λ, 2λ) with iλ ⊢ f (i = 1, 2) such that 1λ
t
1 + 1λ

t
2 > n or

2λ
t
1 + 2λ

t
2 > n .

(b) Let µ ⊢ (f − 2k) be such that µt
1 ≤ n . Then the radical of the B(−2n)

f –module

Hµ
f,k is contained in the sum of all isotypical components (of Hµ

f,k as an Sf–module) of

type λ with λ ⊢ f such that λt1 > n . Similarly, the radical of the algebra B(−2n)
f [k;µ] is

contained in the sum of all isotypical components (of B(−2n)
f [k;µ] as an Sf × Sf–module)

of type (1λ, 2λ) with iλ ⊢ f (i = 1, 2) such that 1λ
t
1 > n or 2λ

t
1 > n . �

At last, our efforts are rewarded.
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Corollary 4.7 (Littlewood’s Restriction Rules).[
Vλ : Uµ

]
=

∑
σ⊢2k

σ has even rows

cλµ,σ for all λ ⊢ f such that λt1 + λt2 ≤ n ;(a)

[
Vλ :Wµ

]
=

∑
σ⊢2k

σ has even columns

cλµ,σ for all λ ⊢ f such that λt1 ≤ n .(b)

Proof. We simply have to collect all previous results. For (a), just patch together Lemma
4.2, Theorem 4.5(a), and Lemma 4.3. For (b), do the same with (b) instead of (a): then[

Vλ :Wµ

]
= Eλ

µ = Ĉ−
λ,µ = Cλt

µt =
∑
σ⊢2k

σ has even rows

cλ
t

µt,σ

for all λ ⊢ f such that λt1 ≤ n ; thus[
Vλ :Wµ

]
=

∑
σ⊢2k

σ has even rows

cλ
t

µt,σ =
∑
σ⊢2k

σ has even columns

cλ
t

µt,σt =
∑
σ⊢2k

σ has even columns

cλµ,σ

for all λ ⊢ f such that λt1 ≤ n , q.e.d. �
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