Real-data testing results of a real-time nonlinear freeway traffic state estimator are presented with a particular focus on its adaptive features. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretches or networks is based on stochastic nonlinear macroscopic traffic flow modeling and extended Kalman filtering. One major innovative aspect of the estimator is the real-time joint estimation of traffic flow variables (flows, mean speeds, and densities) and some important model parameters (free speed, critical density, and capacity), which leads to four significant features of the traffic state estimator: (i) avoidance of prior model calibration; (ii) automatic adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition, control measures); (iii) enabling of incident alarms; (iv) enabling of detector fault alarms. The purpose of the reported real-data testing is, first, to demonstrate feature (i) by investigating some basic properties of the estimator and, second, to explore some adaptive capabilities of the estimator that enable features (ii) (iv). The achieved testing results are quite satisfactory and promising for further work and field applications.
Wang, Y., Papageorgio, M., Messmer, A., Coppola, P., Tzimitsi, A., Nuzzolo, A. (2009). An adaptive freeway traffic state estimator. AUTOMATICA, 45, 10-24 [10.1016/j.automatica.2008.05.019].
An adaptive freeway traffic state estimator
COPPOLA, PIERLUIGI;NUZZOLO, AGOSTINO
2009-01-01
Abstract
Real-data testing results of a real-time nonlinear freeway traffic state estimator are presented with a particular focus on its adaptive features. The pursued general approach to the real-time adaptive estimation of complete traffic state in freeway stretches or networks is based on stochastic nonlinear macroscopic traffic flow modeling and extended Kalman filtering. One major innovative aspect of the estimator is the real-time joint estimation of traffic flow variables (flows, mean speeds, and densities) and some important model parameters (free speed, critical density, and capacity), which leads to four significant features of the traffic state estimator: (i) avoidance of prior model calibration; (ii) automatic adaptation to changing external conditions (e.g. weather and lighting conditions, traffic composition, control measures); (iii) enabling of incident alarms; (iv) enabling of detector fault alarms. The purpose of the reported real-data testing is, first, to demonstrate feature (i) by investigating some basic properties of the estimator and, second, to explore some adaptive capabilities of the estimator that enable features (ii) (iv). The achieved testing results are quite satisfactory and promising for further work and field applications.File | Dimensione | Formato | |
---|---|---|---|
AUTOMATICA.pdf
accesso aperto
Descrizione: copia dell'articolo
Dimensione
7.12 MB
Formato
Adobe PDF
|
7.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.