Let Gamma be a discrete subgroup PSL(2,R). We describe a class of completely positive maps related to the von Neumann algebras in the Berezin's equivariant deformation quantization of the upper half plane, module the discrete subgroup Gamma. When Gamma is PSL(2, Z) we find a non-trivial obstruction for the existence of a one parameter family of isomorphisms, having a generator that preserves a certain differential structure, between the von Neumann algebras in the deformation.

Radulescu, F. (1996). Quantum dynamics and Berezin's deformation quantization. In S. Doplicher, R. Longo, J.E. Roberts, L. Zsido (a cura di), Conference on Operator Algebras and Quantum Field Theory, ACAD NAZL LINCEI, ROME, ITALY (pp. 383-389). Roma : INTERNATIONAL PRESS INC BOSTON, PO BOX 2872, CAMBRIDGE, MA 02238-2872 USA.

Quantum dynamics and Berezin's deformation quantization

RADULESCU, FLORIN
1996-01-01

Abstract

Let Gamma be a discrete subgroup PSL(2,R). We describe a class of completely positive maps related to the von Neumann algebras in the Berezin's equivariant deformation quantization of the upper half plane, module the discrete subgroup Gamma. When Gamma is PSL(2, Z) we find a non-trivial obstruction for the existence of a one parameter family of isomorphisms, having a generator that preserves a certain differential structure, between the von Neumann algebras in the deformation.
1996
Settore MAT/05 - ANALISI MATEMATICA
English
Rilevanza internazionale
Articolo scientifico in atti di convegno
quantum dynamics, hecke
Radulescu, F. (1996). Quantum dynamics and Berezin's deformation quantization. In S. Doplicher, R. Longo, J.E. Roberts, L. Zsido (a cura di), Conference on Operator Algebras and Quantum Field Theory, ACAD NAZL LINCEI, ROME, ITALY (pp. 383-389). Roma : INTERNATIONAL PRESS INC BOSTON, PO BOX 2872, CAMBRIDGE, MA 02238-2872 USA.
Radulescu, F
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
copie paper_for_Rome.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 222.62 kB
Formato Adobe PDF
222.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/171380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact