Stroke patients should be dispatched at the highest level of care available in the shortest time. In this context, a transportable system in specialized ambulances, able to evaluate the presence of an acute brain lesion in a short time interval (i.e., few minutes), could shorten delay of treatment. UWB radar imaging is an emerging diagnostic branch that has great potential for the implementation of a transportable and low-cost device. Transportability, low cost and short response time pose challenges to the signal processing algorithms of the backscattered signals as they should guarantee good performance with a reasonably low number of antennas and low computational complexity, tightly related to the response time of the device. The paper shows that a PCA-based preprocessing algorithm can: (1) achieve good performance already with a computationally simple beamforming algorithm; (2) outperform state-of-the-art preprocessing algorithms; (3) enable a further improvement in the performance (and/or decrease in the number of antennas) by using a multistatic approach with just a modest increase in computational complexity. This is an important result toward the implementation of such a diagnostic device that could play an important role in emergency scenario.
Ricci, E., DI DOMENICO, S., Cianca, E., Rossi, T., Diomedi, M. (2017). PCA-based artifact removal algorithm for stroke detection using UWB radar imaging. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1-13 [10.1007/s11517-016-1568-8].
PCA-based artifact removal algorithm for stroke detection using UWB radar imaging
RICCI, ELISA;DI DOMENICO, SIMONE;CIANCA, ERNESTINA;ROSSI, TOMMASO;DIOMEDI, MARINA
2017-01-01
Abstract
Stroke patients should be dispatched at the highest level of care available in the shortest time. In this context, a transportable system in specialized ambulances, able to evaluate the presence of an acute brain lesion in a short time interval (i.e., few minutes), could shorten delay of treatment. UWB radar imaging is an emerging diagnostic branch that has great potential for the implementation of a transportable and low-cost device. Transportability, low cost and short response time pose challenges to the signal processing algorithms of the backscattered signals as they should guarantee good performance with a reasonably low number of antennas and low computational complexity, tightly related to the response time of the device. The paper shows that a PCA-based preprocessing algorithm can: (1) achieve good performance already with a computationally simple beamforming algorithm; (2) outperform state-of-the-art preprocessing algorithms; (3) enable a further improvement in the performance (and/or decrease in the number of antennas) by using a multistatic approach with just a modest increase in computational complexity. This is an important result toward the implementation of such a diagnostic device that could play an important role in emergency scenario.File | Dimensione | Formato | |
---|---|---|---|
PCA‑based artifact.pdf
accesso aperto
Licenza:
Copyright dell'editore
Dimensione
7.48 MB
Formato
Adobe PDF
|
7.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.