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just a modest increase in computational complexity. This 
is an important result toward the implementation of such a 
diagnostic device that could play an important role in emer-
gency scenario.

Keywords  Brain stroke detection · Microwave UWB 
radar · Artifact removal · PCA

1  Introduction

According to the World Health Organization, stroke is the 
second cause of death above the age of 60  years and the 
first cause of dependence worldwide.

About 87 % of all strokes are ischemic strokes [14] and 
are caused by an inadequate blood supply to part of the 
brain. Intracranial hemorrhage, caused by bleeding mainly 
into parenchymal brain tissue, is responsible for 9 to 27 % 
of all strokes worldwide [5].

Given the high incidence and significant morbidity and 
mortality of stroke, a rapid diagnosis and treatment are very 
important, both in ischemic and in hemorrhagic strokes. 
Neuroimaging techniques play a fundamental role in acute 
stroke process being the first step in stroke pathogenesis 
evaluation. In the pre-computerized tomography era, it was 
impossible to reliably distinguish between cerebral hemor-
rhage and infarction. Nowadays, early after stroke, CT is 
used to identify cerebral hemorrhage with almost complete 
sensitivity and specificity.

As for the heart attack, stroke patients should be dis-
patched at the highest level of care available in the short-
est time. Statewide standardization of telecommunication 
programs, stroke education modules and care protocols are 
recommended to facilitate the recognition of stroke in the 
acute phase, provide adequate pre-hospital stroke care by 

Abstract  Stroke patients should be dispatched at the high-
est level of care available in the shortest time. In this con-
text, a transportable system in specialized ambulances, able 
to evaluate the presence of an acute brain lesion in a short 
time interval (i.e., few minutes), could shorten delay of 
treatment. UWB radar imaging is an emerging diagnostic 
branch that has great potential for the implementation of 
a transportable and low-cost device. Transportability, low 
cost and short response time pose challenges to the signal 
processing algorithms of the backscattered signals as they 
should guarantee good performance with a reasonably low 
number of antennas and low computational complexity, 
tightly related to the response time of the device. The paper 
shows that a PCA-based preprocessing algorithm can: (1) 
achieve good performance already with a computation-
ally simple beamforming algorithm; (2) outperform state-
of-the-art preprocessing algorithms; (3) enable a further 
improvement in the performance (and/or decrease in the 
number of antennas) by using a multistatic approach with 
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emergency medical services and a rapid assessment and 
management of patients [9]. In this context, a transport-
able system in specialized ambulances, able to evaluate the 
presence of an acute brain lesion, could shorten delay of 
treatment. In particular, the identification of a hemorrhagic 
nature of the event could help to differentiate the sub-
group of “hemorrhagic” patients from “possible ischemic” 
patients and select the most adequate hospital destinations.

Microwave imaging is an emerging diagnostic branch 
that has great potential for the implementation of this trans-
portable and low-cost device [24, 25]. MWI is based on the 
observation that different tissues or the same tissues but in 
different functional conditions (i.e., cancerous and healthy 
tissue) have different dielectric properties in the microwave 
band [2]. Two main MWI approaches exist: (1) microwave 
tomography; (2) UWB radar imaging.

Microwave tomography determines morphological 
(location, size and shape) and electromagnetic charac-
teristics (permittivity, conductivity and magnetic perme-
ability) of any abnormal examined tissue [7]. The output 
is the reconstruction of the complete dielectric profile of 
the crossed tissues. The tissue reconstruction requires the 
solution of a very complex mathematical inverse prob-
lem. Moreover, the tomography approach requires a clas-
sification process, and hence, a training phase to construct 
a database with many clinical cases and a large amount 
of a priori and ad hoc information. In UWB radar imag-
ing, broadband pulses are emitted from antennas properly 
located around the object to be analyzed, non-necessarily 
in contact with the object. Backscattered signals are col-
lected by the same antennas. Arrival times and amplitudes 
of backscattered signals are processed by a beamforming 
algorithm to locate the scattering points, i.e., the points 
in which there is a transition from one type of tissue to 
another. The output is a map of the backscattering energy, 
i.e., an image where the pixels with higher energy represent 
potential “abnormal” areas.

So far, some feasibility studies and proof of concepts on 
the use of MWI for stroke detection have been reported [6, 
8, 12, 13, 18, 23]. A relevant work has been done at Chal-
mers University [6, 12, 18], where clinical trials are ongo-
ing. That device is based on the microwave tomography 
approach.

Less advanced is the study of UWB radar imaging for 
stroke detection. As a matter of fact, an UWB radar imag-
ing has great potential for the implementation of a simple, 
transportable and low-cost device, which would have the 
further advantage of not requiring a training phase for clas-
sification purposes [17]. Main challenges are related to:

1.	 Antennas design.
2.	 The trade-off between computational complexity, 

which is related to the costs and response time of the 

device and performance (i.e., stroke detection capabil-
ity).

Several works have been done on the antennas design [13, 
28]. In this paper, we focus on the second challenge. Most 
of the works on UWB radar for stroke detection consider 
a monostatic system and the delay-and-sum (DAS) algo-
rithm [8, 13], which was originally proposed for breast 
cancer detection [11]. The DAS algorithm has the attract-
ing feature of having low computational complexity but 
it offers limited robustness to artifacts. To achieve good 
performance using the DAS algorithm, a very high num-
ber of antennas must be considered. For instance, in [13], 
16 and 32 antennas are used. To improve the performance 
and reduce the number of antennas, much more complex 
beamforming algorithms have been proposed such as the 
MIST, microwave imaging space–time [1, 16], also origi-
nally proposed for breast cancer detection. In [20], the 
MIST algorithm has been extended to stroke detection and 
to the multistatic case. As shown in [20], multistatic MIST 
can provide very good performance also with a low num-
ber of antennas (such as 8). However, this algorithm has 
a very high computational complexity, especially in case 
of a multistatic system, which might result in a response 
time of the order of hours. Therefore, this is not a viable 
solution for the stroke detection device considered in this 
paper.

Modifications to the DAS algorithm have been proposed 
in [27] for breast cancer and extended to stroke detection in 
[21], which are proved to improve the robustness of DAS 
to clutter. Also in this case, the improved performance 
is achieved at expense of an increased computational 
complexity.

In this paper, rather than on the processing algorithm, 
we focus on the preprocessing phase that is needed to 
remove artifacts. As a matter of fact, the preprocessing is 
performed once on the received signals while the process-
ing algorithm is applied on each pixel. Therefore, keeping 
low the computational complexity of the processing algo-
rithm and using a more powerful preprocessing algorithm 
represent a more effective solution to improve the trade-off 
performance–computational complexity.

So far, no much effort has been put on the design of an 
optimized artifact removal algorithm for stroke detection. 
In [20], the Wiener filtering, originally used for breast can-
cer detection, has been optimized for stroke detection and 
extended to the multistatic case. Moreover, a novel algo-
rithm based on PLSR (partial least square regression) has 
been proposed and compared with the Wiener filtering. In 
[15], two novel algorithms for stroke detection have been 
proposed and their performance assessed. They are based 
on the symmetry with respect to the head midline that 
divides the head in left and right hemisphere.
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This paper proposes a low complexity preprocessing 
algorithm based on principal component analysis (PCA) 
processing. PCA has been used for artifact removal in land 
mines and through the wall UWB radar applications [10, 
26], but it has not been considered and optimized for stroke 
detection. For breast cancer detection, the singular value 
decomposition (SVD) has been used in [4] to separate the 
artifacts and lesion subspaces and then remove the artifacts. 
However, as it will be shown in this paper, the algorithm 
considered in [4] does not perform well in case of stroke 
detection.

This paper shows that the proposed preprocessing algo-
rithm allows to: (1) achieve good performance even when 
the simple DAS algorithm is used; (2) outperform state-of-
the-art preprocessing algorithms; (3) further improve the 
performance (and/or decrease the number of antennas) by 
using a multistatic approach with just a modest increase in 
computational complexity (thus still meeting the require-
ments in terms of response time).

Results have been achieved by generating noisy back-
scattered signals via a FDTD (finite-difference time–
domain software) 3D dispersive brain model. The head 
model, the antenna array and the acquisition system of 
backscattering signals have been simulated using FDTD 
software. The brain model is a “stratified” model as in [28]. 
Performance is assessed in terms of accuracy in stroke 
localization, amount of artifacts not completely removed 
and computational complexity.

2 � Methods

2.1 � System model

A block diagram of the overall system is shown in Fig. 1.
The patient is scanned with a diagnostic device consist-

ing of an UWB antenna array system located around the 
head, arranged in an anatomical helmet-like structure. Each 
antenna transmits an UWB pulse (Ricker pulse) into the 
tissues and collects the backscattered signals, i.e., signals 
scattered from tissue discontinuities. Two radar approaches 
are considered: monostatic and multistatic.

The transmitted pulse has a bandwidth that extends from 
1 to 4 GHz, as a consequence of a good trade-off between 
radar spatial resolution and waves attenuation inside the 
human brain [22].

Backscattered signals have been simulated using a 
finite-difference time-domain (FDTD) software. Backscat-
tered signals are then preprocessed by an artifact removal 
algorithm. This preprocessing phase is crucial to guarantee 
good performance when a MWI approach is used. Then, 
the “cleaned” signals are processed by a beamforming 
algorithm to build a map of the backscattering energy of 
the head under examination. The antenna array assembly, 
the type of signal transmitted by the antennas and the 3D 
head model are the input data of the FDTD software.

The head has been modeled as a 3D structure, with dif-
ferent layers. The 3D model consists in a blended ellipsoid, 
simulating the real head size. In Cartesian coordinate sys-
tem, the planar section of the model has 80 mm semi-axis 
along x and a 90 mm semi-axis along y. The depth along z 
is 100 mm. The head consists of a 2-mm-thick skin layer, 
a 6-mm-thick bone layer and brain matter. The dispersive 

Fig. 1   Overall system block 
diagram

Fig. 2   Head and antenna system model

Table 1   Head tissue properties [3]

Tissue Dielectric constant Loss tangent Conductivity 
(S m−1)

Skin 37.952 0.28184 1.4876

Bone 11.352 0.25597 0.40411

White matter 36.107 0.24699 1.2403

Blood 58.181 0.31981 2.5878
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properties of the head tissues have been included in the 
FDTD model, setting different dispersive electrical proper-
ties for skin, bone, brain matter and bleedings. The elec-
tric properties to take into account the dispersivity of the 
biological tissues have been evaluated according the Cole–
Cole model. In particular, the calculated parameters are fit-
ted to a second-order polynomial. Figure 2 shows the pla-
nar section of the system model, with a planar section of 
the head as an ellipse and the antenna system as asterisks.

Table 1 reports the main parameters of the different head 
tissues considered in the model for the computation of the 
backscattered signals, at center frequency of 2.5 GHz [3].

Our model also considers a coupling medium between 
the antennas system and the head. The coupling medium is 
a mixture of different substances with dielectric constants 
similar to the one of the skin, and it is crucial to ease the 
wave propagation inside the tissues and reduce the reflec-
tion contribution from the head–air interface.

2.2 � Processing phase

In this paper, the map of backscattering energy of the head 
is built through a wideband confocal modality based on 
DAS beamforming. The DAS algorithm applies a beam-
former to each return signal from each antenna. The goal 
is to pass unchanged the signals reflected from one specific 
point and attenuate the ones coming from any other loca-
tion. The received signals are time shifted to align them 
and synthetically focused in a point of the tissue. The sig-
nal energy of the focal point is calculated and associated 
with the intensity of the corresponding pixel. If a scatter-
ing object exists (for instance, a lesion) in the focal point, 
signals are summed coherently and the energy is relatively 
high. On the other hand, if the lesion is not in the focal 
point (if the focal point is a healthy tissue), signals are 
summed incoherently and the energy level is low.

The output z[n, r0] of the DAS at the nth sample of the 
focal point r0 can be written as:

where N is the number of channels, xi is the backscattered 
signal of ith channel, nα is the reference time to which all 
received signals are aligned and τi(r0) is the roundtrip prop-
agation delay for location r0 in the ith channel.

The computational complexity of this processing is low, 
and this is a desirable characteristic when the final objec-
tive is the design of a low-cost and fast-response device. It 
could be possible to improve the performance by using a 
more powerful, but also more complex, processing algo-
rithm. As an example of more powerful and complex 
algorithm, in the comparison results shown later we have 

(1)z[n, r0] =

N∑

i=1

xi[n− delayi(r0)] =

N∑

i=1

xi[n− (na − τi(r0))]

considered the MIST algorithm, proposed for breast cancer 
in [1] and extended to the stroke detection in [19].

2.3 � Preprocessing phase

UWB backscattered signals contain a lot of useless infor-
mation (artifacts), which might lead to wrong diagnostic 
results. Strong artifacts are due to the reflection from the 
skin–coupling medium interface. This type of artifacts is 
highly similar across all channels, and they appear earlier 
in time than other reflections as the distance between the 
skin and the antennas is shorter than the distance of any 
stroke and the antennas. Figure 3 shows an example of the 
time relation between the signal that is reflected from the 
skin–coupling medium interface (indicated with an arrow) 
and the signal that is reflected from the stroke (indicated 
with a circle). Therefore, this type of artifact can be easily 
removed by time windowing. However, this time window-
ing is not enough as other types of artifacts are present.

Figure 4 shows the energy map obtained by processing 
the backscattered signals with DAS and MIST beamformer, 
without performing any further preprocessing besides time 
windowing. The external ellipse is the planar section of the 
head, while the internal black circumference is the bleed-
ing extension. The energy output is represented as colored 
pixel in normalized energy scale.

From Fig.  4, it is clear that the signal preprocessing 
stage is an essential step for a correct bleeding detection.

The following main approaches for artifact removal in 
the field on MWI can be found in the literature [4]:

Wiener filters: It was originally proposed by Bond [1] 
and modified in [20] for stroke detection and multistatic 

Fig. 3   Received backscattered signal. The arrow shows the reflected 
signal from skin–coupling medium interface, and the circle shows the 
stroke contribution
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mode. The artifact in each channel is estimated as a fil-
tered combination of the signals in all the other chan-
nels. This algorithm needs the a priori knowledge of the 
time interval in which the backscattered signals contain 
only the artifact contribution. In addition, it introduces a 
small level of distortion in the lesion contribution and it 
is computationally complex.
PLSR: It is based on statistical regression techniques 
[20]. The artifact on each channel is estimated as a linear 
combination of the artifact in all other channels, utiliz-
ing the maximization of correlation as constraint.
Entropy-based time windowing [29]: the algorithm 
applies time windowing to the received signals to get rid 
of the artifacts. This window is designed according to 
the entropy of the signals at each time instant, in order to 
eliminate the similar part of the data. Entropy is a meas-
ure of the uncertainty of a variable and can be seen as 
a measure of the signal variation. For example, a large 
entropy value occurs when data are very similar. This 
algorithm requires no a priori information and brings no 
distortion to the useful data. However, as reported in [4], 
it often fails to accurately estimate the exact portion of 
signals containing the artifacts.
SVD—singular value decomposition: SVD has been 
used for clutter reduction in GPR (ground-penetrating 
radar) and through-wall imaging [26]. Moreover, it has 
been considered in the comparison performed in [4] for 
breast cancer. This algorithm is tightly related to the 
algorithm here proposed. The objective is to decompose 
the received signals into artifact and useful data sub-
space. Only the subspace containing useful information 
is selected, and artifacts are discarded.
Head symmetry [15]: The artifacts are removed by sub-
tracting the backscattered signals at antenna that face 
each other in the array with respect to the head midline, 

i.e., the central line that divides the head into left and 
right hemisphere.

In the following, both monostatic and multistatic modes are 
considered. In the monostatic mode, each antenna is acti-
vated in turn, transmitting a broadband pulse and receiv-
ing the backscattered signals to be processed. Let xii be the 
monostatic signals, when the ith antenna transmits and the 
ith antenna receives. Considering N antennas, the number 
of monostatic channels is C = N. In the multistatic mode, 
each antenna transmits a broadband pulse and all the anten-
nas, including the transmitter, receive the backscattered 
signals. Considering N antennas, the number of multistatic 
channels is C = N*N. However, not all signals carry use-
ful information. For example, channels related to anten-
nas that are not in visibility, since the head is interposed 
between them, do not contain relevant information. On the 
other hand, channels related to adjacent antennas have very 
high information content. Let xji be the signal associated 
to the jith channel, in which the ith antenna transmits and 
the jth antenna receives. The monostatic signals are those 
ones with j =  i. The selected multistatic signals are those 
ones with j = i ± 1, i.e., only the channels associated with 
adjacent antennas. Considering N antennas, the number 
of selected multistatic channels is C =  2*N. Hence, two 
groups of channels are defined, the monostatic channels 
(j =  i) and the selected multistatic channels (j =  i ±  1), 
with C = N + 2*N channels. Only those signal groups are 
preprocessed and processed. The signals within the same 
group are similar, since the channels into the group have 
similar geometric characteristics.

Before passing the backscattered signals to the preproc-
essing algorithm, a first cleaning of the signal is performed 
by a simple low-pass filter [20]. Figure 5 shows the spec-
trum of the backscattered signal in presence of artifact 

Fig. 4   Energy maps without 
the preprocessing phase. The 
energy maps have been obtained 
by processing the backscat-
tered signals with DAS and 
MIST beamformer without the 
preprocessing phase
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(solid line) and the spectrum of the received signal when 
there are no artifacts (dotted line).

It is evident that the stroke contribution is mainly local-
ized in the low frequencies of the spectrum. Therefore, a 
low-pass filtering has been performed, shown in Fig. 5 as 
a rect, which removes the high frequency part of the spec-
trum. The cutoff frequency of the filter has been empiri-
cally selected. It has been verified that this preliminary 
“cleaning” of the signal significantly improves the perfor-
mance for all the preprocessing algorithms that have been 
considered. Nevertheless, it does not remove the main part 
of the artifacts that are within the bandwidth of the low-
pass filter. Therefore, artifact removal is still needed.

2.4 � Proposed preprocessing algorithm—PCA 
(Principal Component Analysis)

The proposed preprocessing algorithm is based on the 
observation that the artifacts in each group of channels are 
highly correlated. This is due to the rather symmetrical 
shape of the head and of the antenna setup. On the other 
hand, the stroke contribution to the reflected signal of each 
channel is uncorrelated, since it occurs in different time 
intervals and follows different propagation paths.

PCA is a statistical technique widely used in pattern 
recognition and most generally in data analysis problems 
[10, 26]. It is mainly used to find and emphasize correlation 
between features and perform a dimensionality reduction 
by projecting to a low-dimensional subspace. PCA allows 
to find a set of mutually orthogonal directions, called prin-
cipal axes, which represent directions along which the vari-
ance in the observed data is maximized. The projections 
of the original variables along the principal directions are 

called principal components (PC) or scores. PCA returns 
principal directions ordered by decreasing variance, so the 
first components capture the highly correlated data, while 
the last ones represent the uncorrelated information. Apply-
ing PCA to our low-pass filtered signals allows to decom-
pose the data into two subspaces: the correlated subspace 
(first PCs), which mainly contains the artifacts contribu-
tion, and the uncorrelated subspace (last PCs), which cap-
ture the stroke reflections.

Let us define X as a [tr x C] matrix, where each column 
xj, with j = 1,…,C, is a vector that contains the samples of 
low-pass filtered signal of the jth channel. tr is the number 
of time samples, and C is the number of similar channels 
considered. The PCA linear transformation is applied to 
X = X −mean(X):

V is a [C × C] linear projection matrix in which the ith col-
umn is called ith principal direction and is equal to the ith 
eigenvector of the covariance matrix of X . The eigenvectors 
are sorted by decreasing eigenvalues σ. An eigenvalue is a 
kind of “measure” of the signal variance captured by the 
corresponding eigenvector. Y is a [tr x C] matrix that rep-
resents the signals projected in the principal components 
space. The ith column of Y corresponds to the projection of 
X  along the ith principal direction and is called ith principal 
component score.

The original data matrix can be reconstructed by a linear 
combination of the principal directions (using orthogonal-
ity of V) as follows:

where yi is the ith principal component, and vi is the ith 
principal axis. As previously mentioned, the first terms of 
the sum, until k-1, represent the highly correlated data in 
X  (i.e., the artifacts), while the last components contain the 
uncorrelated part, including the stroke contribution. There-
fore, a new observation matrix is constructed according to 
(4).

The eigenvalue k is chosen as the nearest to the mean value 
of all the eigenvalues σ, i.e.,

In the algorithm considered in [4] for breast cancer, the 
same decomposition between correlated part of the signal 
and uncorrelated part of the signal is implemented by doing 

(2)Y = XV

(3)X = YVT
=

C∑

i=1

yiv
T
i =

k−1∑

i=1

yiv
T
i +

C∑

i=k

yiv
T
i

(4)Xrec =

C∑

i=k

yiv
T
i

(5)k = argmin
i

(|σi − σmean|)

Fig. 5   Backscattered signal spectrum. The solid line represents the 
spectrum of received signal with artifacts contribution and stroke con-
tribution. The dotted line represents the spectrum of ideal received 
signal, without artifacts



Med Biol Eng Comput	

1 3

the SVD directly to the matrix X. Moreover, the eigenvalue 
k is selected according to:

3 � Results

In this section, first of all the proposed PCA-based pre-
processing algorithm is compared with state-of-the-
art algorithms presented in the previous section, both 
in a monostatic and in a multistatic modes. Signals are 
first passed through a low-pass filter, and then the DAS 

(6)k = argmax
i

(σi − σi+1)

algorithm is used to build the energy map. Backscattered 
signals are generated by a FDTD using a 3D head model 
and eight transmitting/receiving antennas. Noisy backscat-
tered signals have been generated by adding white Gauss-
ian noise with a SNR of 10 dB. The performance has been 
assessed considering a spherical bleeding (hemorrhage) 
with a diameter of 20 mm. Two different positions of the 
bleeding are considered (usually, the hemorrhages close to 
the scalp are more difficult to localize as very close to the 
main artifact).

Let us denote with S the set of points that form a 2D 
window around the detected target in the head and H the 

Fig. 6   Energy maps for different preprocessing algorithms for stroke 
location 1. The energy maps have been obtained with the monostatic 
and multistatic DAS beamformer and the artifact removal algorithm 

based on modified Wiener filters (a), entropy-based time windowing 
(b), SVD (c), brain symmetry (d), PLSR (e) and PCA (f)
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set of all points within the head area. The following com-
monly used metrics have been selected to compare the per-
formance of different algorithms:

The absolute distance Δ between the real center of the 
stroke χ and the location of the stroke estimated as the 
point with maximum intensity in the energy map distri-
bution I:

where

(7)� =
∥∥p∗ − χ�

(8)p∗ = argmax
p∈H

[I(p)]

The stroke is localized with more precision when this dis-
tance is lower.

The metric Q is defined as the ratio of the average inten-
sity in the actual stroke area to the average intensity in 
the rest of head tissues, given by:

A high value of this metric implies that stroke intensity 
is stronger than the intensity of the background region, and 
hence that there is a low amount of artifacts not completely 
removed.

(9)Q =
mean

[
I(p)

]

mean
[
I(p)

] ∀p ∈ S

∀p ∈ H&p /∈ S

Fig. 7   Energy maps for different preprocessing algorithms for stroke 
location 2. The energy maps have been obtained with the monostatic 
and multistatic DAS beamformer and the artifact removal algorithm 

based on modified Wiener filters (a), entropy-based time windowing 
(b), SVD (c), brain symmetry (d), PLSR (e) and PCA (f)
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The signal-to-clutter ratio (SCR) is used to evaluate how 
much energy of the stroke area is above the energy of 
the clutter, which can be written as follows:

where I(p)stroke is the energy value in the 2D window S 
around the stroke, and I(p)clutter is the energy value over 
the same region S when the stroke is not present. Clutter 
is due to the residual artifacts, and the mean energy value 
of clutter is calculated in a stroke-free model, i.e., healthy 
head model without stroke. If artifacts are not effectively 
removed, the SCR will be low.

As already stated, in this work, another important per-
formance metric is the computational complexity, which 
has been evaluated as the order of magnitude of the number 
of basic mathematic operations of each algorithm.

Figures  6, 7 show the backscattering energy map of a 
planar section of the head under examination for two posi-
tions of the stroke, using DAS and different preprocessing 
algorithms. Figures on the left refer to the monostatic mode 
and figures on the right to the multistatic mode. The exter-
nal ellipse is the planar section of the head. The internal 
black circle is the bleeding area. The energy output is rep-
resented as colored pixel in a normalized energy scale.

Tables 2 and 3 show the same comparisons in terms of 
the metrics previously introduced.

Table 2—Metrics performance related to Figs.  6 and 7 
for monostatic DAS.

Table 3—Metrics performance related to Fig. 6 and 7 for 
multistatic DAS.

(10)SCR =
mean[I(p)stroke]

mean[I(p)clutter]

∀p ∈ S

∀p ∈ S

First of all, comparisons show that both for the mono-
static and for the multistatic modes and with a moderate 
number of antennas (8 rather than 16–32 as considered in 
[13]), the proposed preprocessing algorithm shows better 
performance. In the monostatic mode, the entropy-based 
algorithm and the symmetry-based algorithm have metrics 
comparable with the ones achieved with the PCA-based 
algorithm. However, as shown in Figs.  6, 7, the entropy-
based algorithm introduces false alarms, and the symme-
try-based one is less accurate in the definition of the lesion 
contours and its extension.

 For a monostatic system, the performance differ-
ence is still not negligible. The distance Δ in the case of 
monostatic DAS is 4.999 for the PCA-based algorithm 
and 88.459 for the algorithm based on Wiener filters. The 
Q is 4.892 and 0.590, respectively. On the other hand, in 
terms of complexity (see Table  4), the Wiener filtering is 
much more complex (1010 versus 108 for PCA-based algo-
rithm). Specifically, the run time of the algorithms has been 
measured on a laptop with Intel Core i3 M330 2.13 GHz 
CPU. Several runs have been performed of all algorithms, 
and the average run time has been calculated. In particu-
lar, for Wiener filtering, the average run time is about 450 s, 
whereas for the PCA-based algorithm the average run time 
is about 2 s.

Table 2   Metrics performance related to Figs. 6 and 7 for monostatic 
DAS

Δ(mm) Q(dB) SCR (dB)

Stroke location 1

Modified Wiener filters 88.459 0.590 8.048

Entropy 2.761 × 10−4 7.244 10.064

SVD 83.216 −0.872 −3.527

Brain symmetry 7.070 12.201 32.963

PLSR 116.619 −3.806 9.858

PCA 4.999 4.892 12.857

Stroke location 2

Modified Wiener filters 65.191 1.260 6.561

Entropy 2.761 × 10−4 6.035 6.444

SVD 50.990 −6.956 7.712

Brain symmetry 7.070 12.571 30.728

PLSR 45.000 −3.410 24.215

PCA 5.000 5.211 5.561

Table 3   Metrics performance related to Figs. 6 and 7 for multistatic 
DAS

Δ (mm) Q (dB) SCR (dB)

Stroke location 1

Modified Wiener filters 4.999 5.979 11.029

Entropy 53.851 −13.055 −8.050

SVD 84.852 −7.096 −4.139

Brain symmetry 50.249 6.632 20.158

PLSR 91.241 1.479 14.550

PCA 4.999 9.252 16.906

Stroke location 2

Modified Wiener filters 5.000 3.878 3.824

Entropy 107.703 −3.303 −4.749

SVD 46.098 3.633 −0.496

Brain symmetry 11.180 5.327 28.126

PLSR 68.007 −0.406 19.906

PCA 5.000 8.530 11.939

Table 4   Preprocessing algorithms computational complexity

Modified 
Wiener 
filters

Entropy SVD Brain sym-
metry

PLSR PCA

Complexity 1010 105 108 104 105 108
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It is also worth noting that some of the state-of-the-art 
algorithms do not properly work in case of a multistatic 
system. This is the case for the entropy-based algorithm, 
the SVD algorithm and the symmetry-based algorithm. 
This is probably related to the fact that they are not much 
robust to noise and a multistatic system amplifies this 
behavior as more channels are processed and also more 
noise is collected. As a matter of fact, these results change 
significantly if a lower level of noise is considered. For 
instance, in Fig. 8, performance of the SVD with a SNR of 
20  dB is considered. However, even if its performance is 

greatly improved, still the PCA-based algorithm has better 
performance.

Finally, we have also compared the performance of the 
DAS beamformer with the more complex MIST beam-
former when the PCA preprocessing is used. Figure 9 dis-
plays the energy maps, and Table 5 summarizes the metrics.

As expected, the MIST algorithm shows slightly better 
performance, with the same accuracy in stroke localization 
but improved reduction of the artifacts, as shown by the 
distance Δ and the Q. However, as shown in Table 5, the 
MIST has the not negligible disadvantage of increasing the 

Fig. 8   Energy maps for signals with 20 dB of SNR. The energy maps have been obtained with the multistatic DAS beamformer and the artifact 
removal algorithm based on SVD, on the left, and PCA, on the right, when the signals have a SNR of 20 dB

Fig. 9   Energy maps with DAS and MIST beamformer. The energy maps have been obtained with the proposed preprocessing algorithm based 
on PCA and applied to DAS, on the left, and MIST, on the right, beamformer
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computational complexity, especially in case of multistatic 
mode and thus increasing the response time of the diagnos-
tic device. The MIST algorithm complexity is of 5 orders 
of magnitude greater than the one of the DAS. To give an 
idea, using a laptop with Intel Core i3 M330 2.13  GHz 
CPU, the MIST beamformer run time is of some hours of 
processing (about 14,000 s), while the DAS needs only few 
minutes (about 205 s).

Therefore, the proposed preprocessing algorithm has 
the important advantage of achieving performance that is 
comparable or just slightly worse than the one of a more 
powerful processing algorithm, with a negligible increase 
in computational complexity.

4 � Discussion

This paper addresses the use of UWB radar imaging for 
stroke detection. A PCA-based artifact removal algorithm 
has been proposed, which has the important advantage 
of greatly improving the performance of a low complex-
ity beamformer, such as the DAS algorithm, in terms of 
stroke localization capability and amount of artifacts not 
completely removed. Simulation results prove that the 
DAS algorithm combined with the proposed PCA-based 
preprocessing algorithm performs significantly better com-
pared with state-of-the-art preprocessing algorithms, both 
in monostatic and in multistatic modes. Only in the multi-
static mode, the Wiener filtering preprocessing algorithm 
has similar performance, but at expense of much higher 
computational complexity. Moreover, it has been shown 
that the combination of the proposed algorithm with the 
DAS algorithm has performance just slightly worse than the 
ones of the combination of the same preprocessing algo-
rithm and the more complex MIST beamformer. Another 
novel element of this paper is that we consider both a mon-
ostatic and a multistatic cases. Most of the works for stroke 
detection are only limited to the monostatic case. The 
multistatic approach has the advantage of providing more 
accurate performance, as the number of channels is higher, 
at expense of higher complexity (we have to process more 
data). However, by applying the PCA-based preprocessing 
algorithm is possible to achieve good performance with the 
low complex DAS beamforming algorithm, and hence, the 

further improvement in performance achievable by using a 
multistatic rather than a monostatic mode comes at a lower 
cost in terms of complexity.

5 � Conclusion

Transportability, low cost and short response time are key 
requirements for a novel diagnostic device for stroke detec-
tion, based on microwave UWB radar imaging, which 
could play an important role in emergency scenarios. These 
requirements pose challenges to the signal processing algo-
rithms that must guarantee good performance while keep-
ing low the number of antennas and computational com-
plexity (e.g., the response time of the device). This paper 
proposes a PCA-based preprocessing algorithm. Shown 
results indicate that the proposed algorithm allows the 
implementation of a UWB radar imaging device that can 
use: simple DAS processing; a low number of antennas; a 
multistatic approach at low cost in terms of computational 
complexity increases; and it is able to achieve improved 
performance with respect to the state-of-the-art solutions.

The next step before going for clinical trials is the imple-
mentation of a realistic 3D head phantom, with electrical 
properties that emulate those of real tissues. This step is funda-
mental to take into account the less “regular” and not perfectly 
symmetrical head structure, which are expected to have an 
impact on the performance. On the other hand, the results of 
this paper are fundamental to prove the feasibility of a device 
characterized by a fast response and low complexity, which 
are key requirements for such a device and the main motiva-
tion for the use of UWB radar imaging for stroke detection.
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