In this paper we present a novel technique for integrating lexical-semantic knowledge in systems for learning textual entailment recognition rules: the typed anchors. These describe the semantic relations between words across an entailment pair. We integrate our approach in the cross-pair similarity model. Experimental results show that our approach increases performance of cross-pair similarity learning systems.

Pennacchiotti, M., Zanzotto, F.m. (2007). Learning shallow semantic rules for textual entailment. In International Conference Recent Advances in Natural Language Processing, RANLP (pp.458-462). Association for Computational Linguistics (ACL).

Learning shallow semantic rules for textual entailment

ZANZOTTO, FABIO MASSIMO
2007-01-01

Abstract

In this paper we present a novel technique for integrating lexical-semantic knowledge in systems for learning textual entailment recognition rules: the typed anchors. These describe the semantic relations between words across an entailment pair. We integrate our approach in the cross-pair similarity model. Experimental results show that our approach increases performance of cross-pair similarity learning systems.
International Conference Recent Advances in Natural Language Processing, RANLP 2007
bgr
2007
Rilevanza internazionale
2007
Settore INF/01 - INFORMATICA
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
Artificial Intelligence; Computer Science Applications1707 Computer Vision and Pattern Recognition; Software; Electrical and Electronic Engineering
Intervento a convegno
Pennacchiotti, M., Zanzotto, F.m. (2007). Learning shallow semantic rules for textual entailment. In International Conference Recent Advances in Natural Language Processing, RANLP (pp.458-462). Association for Computational Linguistics (ACL).
Pennacchiotti, M; Zanzotto, Fm
File in questo prodotto:
File Dimensione Formato  
2007_RANLP_PennacchiottiZanzotto.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 153.91 kB
Formato Adobe PDF
153.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/165451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact