Many abandoned room and pillar mines have been excavated not far from the surface of large areas of important European cities. In Rome, these excavations took place at shallow depths (3-15 m below the ground surface) in weak pyroclastic soft rocks. Many of these cavities have collapsed; others appear to be in a stable condition, although an appreciable percentage of their structural components (pillars, roofs, etc.) have shown increasing signs of distress from both the morphological and mechanical points of view. In this study, the stress-strain behaviour of soft rock pillars sustaining systems of cavities under vertical loads was numerically simulated, starting from the in situ initial conditions due to excavation of the cavities. The mechanical behaviour of the constituent material of the pillar was modelled according to the Modified Cam-Clay constitutive law (elastoplastic with strain hardening). The influence of the pillar geometry (cross-section area, shape, and height) and mechanical parameters of the soft rock on the ultimate compressive strength of the pillar as a whole was parametrically investigated first. Based on the numerical results, an original relationship for pillar strength assessment was developed. Finally, the estimated pillar strengths according to the proposed formula and well-known formulations in the literature were compared.

Rastiello, G., Federico, F., Screpanti, S. (2014). New soft rock pillar strength formula derived through parametric FEA using a critical state plasticity model. ROCK MECHANICS AND ROCK ENGINEERING, 48(5), 2077-2091 [10.1007/s00603-014-0693-7].

New soft rock pillar strength formula derived through parametric FEA using a critical state plasticity model

FEDERICO, FRANCESCO;
2014-01-01

Abstract

Many abandoned room and pillar mines have been excavated not far from the surface of large areas of important European cities. In Rome, these excavations took place at shallow depths (3-15 m below the ground surface) in weak pyroclastic soft rocks. Many of these cavities have collapsed; others appear to be in a stable condition, although an appreciable percentage of their structural components (pillars, roofs, etc.) have shown increasing signs of distress from both the morphological and mechanical points of view. In this study, the stress-strain behaviour of soft rock pillars sustaining systems of cavities under vertical loads was numerically simulated, starting from the in situ initial conditions due to excavation of the cavities. The mechanical behaviour of the constituent material of the pillar was modelled according to the Modified Cam-Clay constitutive law (elastoplastic with strain hardening). The influence of the pillar geometry (cross-section area, shape, and height) and mechanical parameters of the soft rock on the ultimate compressive strength of the pillar as a whole was parametrically investigated first. Based on the numerical results, an original relationship for pillar strength assessment was developed. Finally, the estimated pillar strengths according to the proposed formula and well-known formulations in the literature were compared.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ICAR/07 - GEOTECNICA
English
Con Impact Factor ISI
room and pillar mines shallow cavities pillar strength soft rocks Roman pozzolana numerical parametric study analytical relationship
Rastiello, G., Federico, F., Screpanti, S. (2014). New soft rock pillar strength formula derived through parametric FEA using a critical state plasticity model. ROCK MECHANICS AND ROCK ENGINEERING, 48(5), 2077-2091 [10.1007/s00603-014-0693-7].
Rastiello, G; Federico, F; Screpanti, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
rastiello_rmre_2014_researchgate.pdf

accesso aperto

Licenza: Non specificato
Dimensione 9.54 MB
Formato Adobe PDF
9.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/137013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact