We consider the evolution of a closed convex hypersurface under a volume preserving curvature flow. The speed is given by a power of the m-th mean curvature plus a volume preserving term, including the case of powers of the mean curvature or of the Gauss curvature. We prove that if the initial hypersurface satisfies a suitable pinching condition, the solution exists for all times and converges to a round sphere.

Cabezas Rivas, E., Sinestrari, C. (2010). Volume-preserving flow by powers of the m-th mean curvature. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 38, 441-469 [10.1007/s00526-009-0294-6].

Volume-preserving flow by powers of the m-th mean curvature

SINESTRARI, CARLO
2010-01-01

Abstract

We consider the evolution of a closed convex hypersurface under a volume preserving curvature flow. The speed is given by a power of the m-th mean curvature plus a volume preserving term, including the case of powers of the mean curvature or of the Gauss curvature. We prove that if the initial hypersurface satisfies a suitable pinching condition, the solution exists for all times and converges to a round sphere.
2010
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Cabezas Rivas, E., Sinestrari, C. (2010). Volume-preserving flow by powers of the m-th mean curvature. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 38, 441-469 [10.1007/s00526-009-0294-6].
Cabezas Rivas, E; Sinestrari, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/13491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
social impact