Global energy context has become more and more complex in the last decades: raising prices of depleting fossil fuels, together with economic crisis and new international environmental and energy policies, are forcing companies (and manufacturing industry in particular, which is responsible for 90% of industry energy consumptions, in turn making up the 51% of global energy usage, as listed on EIA, the Energy International Agency, website, last accessed on the 5th of October 2014) to cut energy wastes and inefficiencies, and to control their consumptions. Besides the existing analysis of the above mentioned regulatory and economic concerns, Energy Efficiency criticality for manufacturing systems has recently been investigated and proved also by the analysis of its connection with Productivity Efficiency [1-4], which resulted to be strong and mutual, and of the numerous non-energy benefits achieved while performing energy efficiency measures [5], such as the improvement of corporate image and the environmental impact reduction. Over most recent years, Energy Efficiency has therefore become a critical factor for industrial plants’ competitiveness, and is now definitely considered as a key driver to economic development and sustainability. But, despite it all, it is often still difficult for many companies to understand its effectiveness, in good part because of the difficulties met in focusing its technical and economic benefits, as Laitner [6] highlights: “Energy Efficiency has been an invisible resource. Unlike a new power plant or a new oil well, we do not see energy efficiency at work. (...) energy efficiency may be thought of as the cost-effective investments in the energy we do not use either to produce a certain amount of goods and services within the economy.” As a matter of fact, Energy Efficiency still represents a challenging goal for most companies. As above mentioned, numerous problems are yet to overcome in quantifying its benefits and evaluating the cost-effectiveness of related investments, and most of all the huge variety, complexity and changeability of fields, technologies and methodologies involved in its improvement in production systems are responsible for the slowing down of their resolution and of the spread of Energy Efficiency measures and culture. In fact, in order to individuate and prioritize suitable improvement interventions and Energy Efficiency opportunities, and to design and customize the Energy Management System or the Monitoring and Control System according to a particular company’s needs, a deep and complete knowledge of many different subjects and disciplines (ranging from physics and thermodynamics to economy and project management) is needed, besides a good ability and practical sensibility to direct one’s efforts in the right way. Considering that Energy Efficiency isn’t obviously the core business of manufacturing industry, such effort might sometimes be very laborious, and in recent years many companies have decided to demand Energy Management activities to specialized external companies, the so-called Energy Service Companies (ESCos). ESCos generally own the know-how required to individuate Energy Efficiency measures and are also able to fund Energy Efficiency investments (see [7] for a specific literature review); what they usually do not own is a deep understanding of the company’s dynamics, situations and needs, as well as the capability to draw a long-term development path towards the achievement of a diffused Energy Efficiency culture within the company, which shall be consistent with the company’s vision and policies and is essential in order to consolidate and continuously upgrade improvements in such sector. It is then crucial for companies to have at least a general consciousness of all intervention areas and of all possible improvements, both managerial (and/or behavioural) and technological, that could be pursued and achieved, in order to be able to lead their own way towards their sustainable development, and also to capitalize ESCOs’ assistance and services. In order to overcome part of these difficulties, and in particular to make it easier for companies to address their efforts and catch best efficiency opportunities, a logical and systemic approach is necessary: it would help not to overlook any possible area of improvement, to easily classify and understand those areas, but also to identify the most suitable and cost-effective, and eventually to prioritize them. In the light of this, some studies have already been conducted in order to find out methods and tools to assess the current level of maturity of a company in the Energy Management field [8], and to help individuating a possible development path. However, although they point out some possible development scenarios, they do not provide a complete and organic categorization of all possible areas of intervention, so as to make it easier for practitioners to address their efforts into the right way. In this chapter, a new conceptual scheme to organize and classify Energy Efficiency measures is defined, leading from the definition of Energy Cost per Product Unit and further breaking it up in order to identify and define all possible areas of intervention, providing for each of them a brief overview of possible measures and opportunities and a specific literature review. All scientific papers, books and technical papers considered for the literature review of each area (chosen on the basis of a wide literature research and on authors’ on-field experience) are recalled and systematized in Table 1, so that the reader is guided through their examination and rapidly addressed to their consultation. In addition, a qualitative evaluation of the impact of some possible Energy Efficiency measures from each area on the energy network is given, in order to give both practitioners and researchers a first input to further focus on this additional feasibility evaluation criteria for Energy Efficiency measures, which enables to evaluate them on a national or international level rather than considering the benefits or concerns belonging to a single company.

Benedetti, M., Cesarotti, V., Introna, V. (2015). Improving Energy Efficiency in Manufacturing Systems — Literature Review and Analysis of the Impact on the Energy Network of Consolidated Practices and Upcoming Opportunities. In Energy Efficiency Improvements in Smart Grid Components. Intech [10.5772/59820].

Improving Energy Efficiency in Manufacturing Systems — Literature Review and Analysis of the Impact on the Energy Network of Consolidated Practices and Upcoming Opportunities

CESAROTTI, VITTORIO;INTRONA, VITO
2015-01-01

Abstract

Global energy context has become more and more complex in the last decades: raising prices of depleting fossil fuels, together with economic crisis and new international environmental and energy policies, are forcing companies (and manufacturing industry in particular, which is responsible for 90% of industry energy consumptions, in turn making up the 51% of global energy usage, as listed on EIA, the Energy International Agency, website, last accessed on the 5th of October 2014) to cut energy wastes and inefficiencies, and to control their consumptions. Besides the existing analysis of the above mentioned regulatory and economic concerns, Energy Efficiency criticality for manufacturing systems has recently been investigated and proved also by the analysis of its connection with Productivity Efficiency [1-4], which resulted to be strong and mutual, and of the numerous non-energy benefits achieved while performing energy efficiency measures [5], such as the improvement of corporate image and the environmental impact reduction. Over most recent years, Energy Efficiency has therefore become a critical factor for industrial plants’ competitiveness, and is now definitely considered as a key driver to economic development and sustainability. But, despite it all, it is often still difficult for many companies to understand its effectiveness, in good part because of the difficulties met in focusing its technical and economic benefits, as Laitner [6] highlights: “Energy Efficiency has been an invisible resource. Unlike a new power plant or a new oil well, we do not see energy efficiency at work. (...) energy efficiency may be thought of as the cost-effective investments in the energy we do not use either to produce a certain amount of goods and services within the economy.” As a matter of fact, Energy Efficiency still represents a challenging goal for most companies. As above mentioned, numerous problems are yet to overcome in quantifying its benefits and evaluating the cost-effectiveness of related investments, and most of all the huge variety, complexity and changeability of fields, technologies and methodologies involved in its improvement in production systems are responsible for the slowing down of their resolution and of the spread of Energy Efficiency measures and culture. In fact, in order to individuate and prioritize suitable improvement interventions and Energy Efficiency opportunities, and to design and customize the Energy Management System or the Monitoring and Control System according to a particular company’s needs, a deep and complete knowledge of many different subjects and disciplines (ranging from physics and thermodynamics to economy and project management) is needed, besides a good ability and practical sensibility to direct one’s efforts in the right way. Considering that Energy Efficiency isn’t obviously the core business of manufacturing industry, such effort might sometimes be very laborious, and in recent years many companies have decided to demand Energy Management activities to specialized external companies, the so-called Energy Service Companies (ESCos). ESCos generally own the know-how required to individuate Energy Efficiency measures and are also able to fund Energy Efficiency investments (see [7] for a specific literature review); what they usually do not own is a deep understanding of the company’s dynamics, situations and needs, as well as the capability to draw a long-term development path towards the achievement of a diffused Energy Efficiency culture within the company, which shall be consistent with the company’s vision and policies and is essential in order to consolidate and continuously upgrade improvements in such sector. It is then crucial for companies to have at least a general consciousness of all intervention areas and of all possible improvements, both managerial (and/or behavioural) and technological, that could be pursued and achieved, in order to be able to lead their own way towards their sustainable development, and also to capitalize ESCOs’ assistance and services. In order to overcome part of these difficulties, and in particular to make it easier for companies to address their efforts and catch best efficiency opportunities, a logical and systemic approach is necessary: it would help not to overlook any possible area of improvement, to easily classify and understand those areas, but also to identify the most suitable and cost-effective, and eventually to prioritize them. In the light of this, some studies have already been conducted in order to find out methods and tools to assess the current level of maturity of a company in the Energy Management field [8], and to help individuating a possible development path. However, although they point out some possible development scenarios, they do not provide a complete and organic categorization of all possible areas of intervention, so as to make it easier for practitioners to address their efforts into the right way. In this chapter, a new conceptual scheme to organize and classify Energy Efficiency measures is defined, leading from the definition of Energy Cost per Product Unit and further breaking it up in order to identify and define all possible areas of intervention, providing for each of them a brief overview of possible measures and opportunities and a specific literature review. All scientific papers, books and technical papers considered for the literature review of each area (chosen on the basis of a wide literature research and on authors’ on-field experience) are recalled and systematized in Table 1, so that the reader is guided through their examination and rapidly addressed to their consultation. In addition, a qualitative evaluation of the impact of some possible Energy Efficiency measures from each area on the energy network is given, in order to give both practitioners and researchers a first input to further focus on this additional feasibility evaluation criteria for Energy Efficiency measures, which enables to evaluate them on a national or international level rather than considering the benefits or concerns belonging to a single company.
2015
Settore ING-IND/17 - IMPIANTI INDUSTRIALI MECCANICI
English
Rilevanza internazionale
Capitolo o saggio
manufacturing system energy efficiency; best available technology for energy efficiency
http://www.intechopen.com/books/energy-efficiency-improvements-in-smart-grid-components/improving-energy-efficiency-in-manufacturing-systems-literature-review-and-analysis-of-the-impact-on
Benedetti, M., Cesarotti, V., Introna, V. (2015). Improving Energy Efficiency in Manufacturing Systems — Literature Review and Analysis of the Impact on the Energy Network of Consolidated Practices and Upcoming Opportunities. In Energy Efficiency Improvements in Smart Grid Components. Intech [10.5772/59820].
Benedetti, M; Cesarotti, V; Introna, V
Contributo in libro
File in questo prodotto:
File Dimensione Formato  
47871.pdf

accesso aperto

Licenza: Non specificato
Dimensione 401.51 kB
Formato Adobe PDF
401.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/131852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact