In this paper a data-driven approach for signal separation over the digital domain is discussed. The proposed approach solves the problem as a classification task and it is widely experimented over electromagnetic signals in open scenarios. Results show that high levels of accuracy are reachable through a relatively easy learning method over simulated data. © 2013 Springer-Verlag.

Filice, S., Croce, D., Basili, R. (2013). A robust machine learning approach for signal separation and classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp.749-757) [10.1007/978-3-642-38628-2_89].

A robust machine learning approach for signal separation and classification

CROCE, DANILO;BASILI, ROBERTO
2013-05-01

Abstract

In this paper a data-driven approach for signal separation over the digital domain is discussed. The proposed approach solves the problem as a classification task and it is widely experimented over electromagnetic signals in open scenarios. Results show that high levels of accuracy are reachable through a relatively easy learning method over simulated data. © 2013 Springer-Verlag.
6th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2013
Funchal, Madeira, prt
2013
Rilevanza internazionale
mag-2013
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
Settore INF/01 - INFORMATICA
English
Machine Learning; Pattern recognition; Signal Processing; Support Vector Machines; Computer Science (all); Theoretical Computer Science
Intervento a convegno
Filice, S., Croce, D., Basili, R. (2013). A robust machine learning approach for signal separation and classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp.749-757) [10.1007/978-3-642-38628-2_89].
Filice, S; Croce, D; Basili, R
File in questo prodotto:
File Dimensione Formato  
filice_et_al_ibpria_2013.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 358.35 kB
Formato Adobe PDF
358.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/124247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact