Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, with an etiopathogenesis involving both genetic and environmental factors. The occupational/residential exposure to the electromagnetic fields has been recently associated with an increased risk of neurodegenerative diseases; it has been thus proposed that the extremely low frequency magnetic field (ELF-MF) may contribute to neurodegenerative etiopathogenesis, as its interaction with biological systems directly impairs redox homeostasis in specific areas of the brain. The molecular mechanisms elicited by ELF-MF, and their potential involvement in PD onset, still remain unclear. To this end, we set up a generator of ELF-MF able to stably and homogeneously reproduce environmental prolonged exposure to ELF-MF (50 Hz, 1 mT). Results obtained indicate that ELF-MF exposure alters cell response of SH-SY5Y cells to MPP+. We demonstrate that ELF-MF does not affect per se survival, shape, and morphology of both proliferating and differentiated SH-SY5Y cells but significantly impairs redox homeostasis and thiol content, triggering an increase in protein carbonylation. As a result, toxicity of MPP+, even at low doses, is highly enhanced in ELF-MF-exposed cells due to a significant increase in ROS levels, potentiation of oxidative damage, and induction of a caspase-dependent apoptosis. Pre-incubation with the thiol antioxidants N-acetyl-L-cysteine and GSH ethyl-ester significantly reduces the extent of oxidative damage and protects cells from death induced by the combined treatment ELF-MF/MPP+. Taken overall, our results demonstrate the redox-based molecular interaction between ELF-MF and PD neurotoxins in vitro, and open a new scenario for defining the synergy of environmental factors in PD onset.

Benassi, B., Filomeni, G., Montagna, C., Merla, C., Lopresto, V., Pinto, R., et al. (2016). Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP+. MOLECULAR NEUROBIOLOGY, 53(6), 4247-4260 [10.1007/s12035-015-9354-4].

Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP+

FILOMENI, GIUSEPPE;
2016-01-01

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, with an etiopathogenesis involving both genetic and environmental factors. The occupational/residential exposure to the electromagnetic fields has been recently associated with an increased risk of neurodegenerative diseases; it has been thus proposed that the extremely low frequency magnetic field (ELF-MF) may contribute to neurodegenerative etiopathogenesis, as its interaction with biological systems directly impairs redox homeostasis in specific areas of the brain. The molecular mechanisms elicited by ELF-MF, and their potential involvement in PD onset, still remain unclear. To this end, we set up a generator of ELF-MF able to stably and homogeneously reproduce environmental prolonged exposure to ELF-MF (50 Hz, 1 mT). Results obtained indicate that ELF-MF exposure alters cell response of SH-SY5Y cells to MPP+. We demonstrate that ELF-MF does not affect per se survival, shape, and morphology of both proliferating and differentiated SH-SY5Y cells but significantly impairs redox homeostasis and thiol content, triggering an increase in protein carbonylation. As a result, toxicity of MPP+, even at low doses, is highly enhanced in ELF-MF-exposed cells due to a significant increase in ROS levels, potentiation of oxidative damage, and induction of a caspase-dependent apoptosis. Pre-incubation with the thiol antioxidants N-acetyl-L-cysteine and GSH ethyl-ester significantly reduces the extent of oxidative damage and protects cells from death induced by the combined treatment ELF-MF/MPP+. Taken overall, our results demonstrate the redox-based molecular interaction between ELF-MF and PD neurotoxins in vitro, and open a new scenario for defining the synergy of environmental factors in PD onset.
2016
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
http://link.springer.com/article/10.1007%2Fs12035-015-9354-4#/page-1
Benassi, B., Filomeni, G., Montagna, C., Merla, C., Lopresto, V., Pinto, R., et al. (2016). Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP+. MOLECULAR NEUROBIOLOGY, 53(6), 4247-4260 [10.1007/s12035-015-9354-4].
Benassi, B; Filomeni, G; Montagna, C; Merla, C; Lopresto, V; Pinto, R; Marino, C; Consales, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/122772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 39
social impact