We consider the evolution of a closed convex hypersurface in euclidean space under a volume preserving flow whose speed is given by a positive power of the mean curvature. We prove that the solution exists for all times and converges to a sphere. The result does not assume the curvature pinching properties or the restrictions on the dimension that were usually required in the previous literature. The proof of the convergence exploits the monotonicity of the isoperimetric ratio satisfied by this class of flows.

Sinestrari, C. (2015). Convex hypersurfaces evolving by volume preserving curvature flows. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 54(2), 1985-1993 [10.1007/s00526-015-0852-z].

Convex hypersurfaces evolving by volume preserving curvature flows

SINESTRARI, CARLO
2015-01-01

Abstract

We consider the evolution of a closed convex hypersurface in euclidean space under a volume preserving flow whose speed is given by a positive power of the mean curvature. We prove that the solution exists for all times and converges to a sphere. The result does not assume the curvature pinching properties or the restrictions on the dimension that were usually required in the previous literature. The proof of the convergence exploits the monotonicity of the isoperimetric ratio satisfied by this class of flows.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
Settore MAT/03 - GEOMETRIA
English
The author has been supported by FIRB-IDEAS project “Analysis and beyond” and by the group GNAMPA of INdAM (Istituto Nazionale di Alta Matematica).
Sinestrari, C. (2015). Convex hypersurfaces evolving by volume preserving curvature flows. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 54(2), 1985-1993 [10.1007/s00526-015-0852-z].
Sinestrari, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
calcvar15.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 723.85 kB
Formato Adobe PDF
723.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/121200
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact