Power nonnegative matrices are defined as complex matrices having at least one nonnegative integer power. We exploit the possibility of deriving a Perron–Frobenius-liketheory for these matrices, obtaining three main results and drawing several consequences. We study, in particular, the relationships with the set of matrices having eventually nonnegative powers, theinverse of M-type matrices and the set of matrices whose columns (rows) sum up to one.
Tudisco, F., Cardinali, V., DI FIORE, C. (2015). On complex power nonnegative matrices. LINEAR ALGEBRA AND ITS APPLICATIONS, 471, 449-468 [10.1016/j.laa.2014.12.021].
On complex power nonnegative matrices
DI FIORE, CARMINE
2015-01-01
Abstract
Power nonnegative matrices are defined as complex matrices having at least one nonnegative integer power. We exploit the possibility of deriving a Perron–Frobenius-liketheory for these matrices, obtaining three main results and drawing several consequences. We study, in particular, the relationships with the set of matrices having eventually nonnegative powers, theinverse of M-type matrices and the set of matrices whose columns (rows) sum up to one.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
TudCarDiF.pdf
accesso aperto
Descrizione: Articolo principale
Licenza:
Copyright dell'editore
Dimensione
430.72 kB
Formato
Adobe PDF
|
430.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.