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Power nonnegative matrices are defined as complex matrices 
having at least one nonnegative integer power. We exploit the 
possibility of deriving a Perron–Frobenius-like theory for these 
matrices, obtaining three main results and drawing several 
consequences. We study, in particular, the relationships with 
the set of matrices having eventually nonnegative powers, 
the inverse of M-type matrices and the set of matrices whose 
columns (rows) sum up to one.
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1. Introduction

Given a complex n ×n matrix A, we call it power nonnegative if there exists an integer 
k ≥ 1 such that Ak is a nonnegative matrix. Spectral properties of real power positive 
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matrices were investigated for instance in [3,7,13]. Complex matrices whose powers Ak

are nonnegative (positive) for all k large enough are called eventually nonnegative (pos-
itive). Real eventually nonnegative (positive) matrices were introduced by Friedland [5]. 
Such matrices have been widely studied and, in particular, several recent works aimed 
at extending some classical results of the Perron–Frobenius theory for nonnegative ma-
trices, to eventually nonnegative matrices, see for instance [9–12,15,17]. Is it possible to 
do the same for the more general power nonnegative matrices? Are power nonnegative 
and eventually nonnegative matrices related somehow? We investigate these problems 
alongside Section 2 obtaining the results in Theorems 3.1, 3.7, 3.8 and in several corol-
laries (see for instance Corollaries 4.1 and 4.2). Moreover we provide a new direct and 
selfcontained proof of the theorem concerning the Perron–Frobenius properties of an 
eventually nonnegative matrix [12].

1.1. Notations and preliminaries

Any matrix is assumed to be a square complex matrix of order n, unless otherwise 
specified. Given a matrix M let aM (λ) and gM (λ) denote the algebraic and geometric 
multiplicities of λ as an eigenvalue of M , respectively, and let σ(M) be the spectrum 
of M . The square zero matrix is denoted by O. The imaginary unit is denoted by i, 
e = (1, . . . , 1)T is the vector of all ones and ei is the i-th canonical vector (ei)k = δik. 
A nonnegative (positive) matrix A = (aij)ij is a matrix such that aij ≥ 0 (aij > 0), 
∀i, j. For such matrices we use the symbol A ≥ O (A > O) underlying the partial order 
A ≥ B ⇔ A −B ≥ O.

By saying that a complex matrix A is a weakly stochastic matrix we mean that AT e = e

(weakly column stochastic). So any weakly stochastic matrix having nonnegative en-
tries is a stochastic matrix in the usual sense. If Ae = e we say that A is weakly row 
stochastic. If both A and AT are weakly stochastic then A is said weakly doubly stochas-
tic.

A matrix A is called reducible if there exists a permutation matrix P such that

PAP T =
(
X O

W Y

)
where the diagonal blocks are square matrices. A matrix is said to be irreducible if it is 
not reducible.

We recall the Perron–Frobenius theorem for square nonnegative, nonnegative irre-
ducible and primitive matrices, respectively, collecting the results stated in [1,4,16].

Theorem 1.1 (Perron–Frobenius). Let A ≥ O be a square matrix and let ρ(A) be its 
spectral radius. Then:

1. ρ(A) ∈ σ(A).
2. There exist x, y ≥ 0 such that Ax = ρ(A)x, yTA = ρ(A)yT , with x, y �= 0.
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If moreover A ≥ O is irreducible, then:

3. ρ(A) ∈ σ(A) is simple and nonzero.
4. The right and left eigenvectors x, y in 2 are positive and, as a consequence of 3, 

unique up to a scalar multiple.
5. There exists p ≥ 1 such that ρ(A) exp(2πih

p ), 1 ≤ h ≤ p, are simple eigenvalues of A
and there is no other eigenvalue of modulus ρ(A).

6. There exists a permutation matrix P such that

PAP T =

⎛⎜⎜⎜⎝
A1

. . .
Ap−1

Ap

⎞⎟⎟⎟⎠ (1)

where p is as in 5, the diagonal blocks are zero square matrices, and the Ai are in 
general rectangular matrices.

7. 1
1+k

∑k
s=0(

A
ρ(A) )

s k→∞−−−−→ xyT

xTy
> O,

and the following statements are equivalent:

8. A is primitive, i.e. ∃k > 0 such that Ak > O.
9. There exists k0 such that Ak > O for all k ≥ k0.

10. The integer p in 5 is one.
11. ( A

ρ(A) )
k k→∞−−−−→ xyT

xTy
> O.

Note that primitive matrices, which are sometimes called acyclic or aperiodic matri-
ces, are by point 8 a subclass of eventually positive matrices [16,11]. Moreover, if A is 
primitive, the first k for which Ak is positive is usually called the exponent of A, and is 
denoted by γ(A).

2. Power nonnegative matrices

Given any n × n matrix A, let us denote by λ1(A), λ2(A), . . . , λs(A) its s distinct 
eigenvalues, with the convention that

ρ(A) =
∣∣λ1(A)

∣∣ ≥ ∣∣λ2(A)
∣∣ ≥ · · · ≥

∣∣λs(A)
∣∣

We give the following definition, which is a slight modification of the terminology 
introduced in [3] and [13].

Definition 2.1. A square matrix A is said to be power nonnegative (positive) if ∃k ≥ 1
such that Ak ≥ O (> O). For such a matrix we let
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ν(A) = min
{
k ≥ 1

∣∣ Ak ≥ O
}
, π(A) = min

{
k ≥ 1

∣∣ Ak > O
}

be its nonnegative and positive exponents, respectively.

Note that for a power positive matrix A it holds 1 ≤ ν(A) ≤ π(A). Also, A is 
nonnegative if and only if ν(A) = 1, and A is primitive if and only if 1 = ν(A) ≤ π(A) =
γ(A).

A complex matrix A such that Ak ≥ O (> O) for any large enough k is called 
eventually nonnegative (positive). Real eventually nonnegative (positive) matrices were 
introduced by Friedland in [5] and have been widely studied, see for instance [6,10,15]. 
In particular Naqvi, McDonald, Noutsos, Varga and Zaslavsky showed in [9,11,12,17], 
respectively, that eventually nonnegative (positive) matrices maintain several of the 
Perron–Frobenius properties of nonnegative (positive) matrices.

In spite of what one could suppose at a first glance, an eventually nonnegative matrixA

has not to be real, unless A is nonsingular (in the latter case, in fact, the equality 
(Ar −Ar)As = 0, which holds for all r + s large enough, implies Ar −Ar = O for all r). 
Indeed if A = U + iV where V U = UV = O, V is real nilpotent and U is real eventually 
nonnegative, then A is a (purely) complex eventually nonnegative matrix. For example

A = U + iV, U =

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ , V =

⎛⎝ 1 1 −2
−1 −1 2
0 0 0

⎞⎠ (2)

Actually Zaslavsky and Tam have shown in [18] that this is somehow the only possibility. 
In fact they observed that any complex matrix A can be uniquely represented as BA+NA

where NA is a nilpotent matrix such that BANA = NABA = O and BA is a matrix whose 
singular elementary Jordan blocks2 (if any) are 1-dimensional. Thus they showed that 
A is eventually nonnegative (positive) if and only if BA is a real eventually nonnegative 
(positive) matrix.

Eventually nonnegative (positive) matrices are of course a proper subset of power 
nonnegative (positive) matrices. In what follows we derive a Perron–Frobenius-like theory 
for power nonnegative (positive) matrices (Section 3 and Theorems 3.1, 3.7, 3.8 therein). 
From this we draw in Section 4 several consequences, obtaining some new and some 
known properties of real power positive matrices (see f.i. [3,7,13]), extending Theorem 4.2 
in [8] to complex matrices and showing how complex eventually and power nonnegative 
matrices are related (Corollaries 4.1 and 4.2 above all).

3. Main results

Next Theorems 3.1, 3.7 and 3.8 give a generalization of the Perron–Frobenius Theo-
rem 1.1 to power nonnegative matrices. First of all observe that, if A is power nonnega-

2 That is an elementary Jordan block relative to a zero eigenvalue.
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tive, even in case A is real, λ1(A) s.t. |λ1(A)| = ρ(A) and its right and left eigenvectors 
might be not real. In fact

A =
(

0 1
−1 0

)
is such that A2 = −I, A3 = AT and A4 = I ≥ O, thus A is power nonnegative with 
ν(A) = 4. However the eigenspace of λ1(A) = i (or, equivalently, λ1(A) = −i) does not 
contain real vectors, so properties 1 and 2 of Theorem 1.1 cannot hold. Also note that 
such A is an example of power nonnegative matrix which is not eventually nonnegative. 
More in general one can easily propose examples of power nonnegative matrices which 
are not eventually nonnegative simply by considering idempotent matrices A which are 
not nonnegative themselves.

Theorem 3.1. Let A be an n × n power nonnegative matrix, and let x, y ∈ Cn be such 
that Ax = λ1(A)x, yTA = λ1(A)yT . Then:

(i) There exists an integer h, 1 ≤ h ≤ ν(A), such that λ1(A) = ρ(A) exp( 2πih
ν(A) ).

If moreover Ak is nonnegative and irreducible for some k ≥ ν(A), then:

(ii) λ1(A) is simple and nonzero, and ρ(A) ∈ σ(A) if and only if λ1(A) = ρ(A).
(iii) The right and the left eigenvectors x, y can be chosen positive and unique up to a 

scalar multiple.
(iv) If ν(A) and k are coprime3 then ρ(A) ∈ σ(A). If ρ(A) /∈ σ(A) and ν(A) or k are 

prime, then ν(A) is the least positive integer for which Aν(A) is nonnegative and 
irreducible.

(v) λ1(A)−1A is similar to a power nonnegative weakly column stochastic matrix C
and to a power nonnegative weakly row stochastic matrix R, both having the same 
pattern of A and such that ν(C) = ν(R) = ν(A).

(vi) If λ ∈ σ(A) is such that |λ| = ρ(A), then λ = ρ(A) exp(2πih
pk ), where p is the 

cardinality of {λ ∈ σ(A) | |λ| = ρ(A)}, and 1 ≤ h ≤ pk.
(vii) If (Ak)ii > 0 for some i, then |λ1(A)| > |λ2(A)|.

Proof. (i) The Perron–Frobenius (PF) theorem applied to Aν(A) implies that λ1(Aν(A)) =
ρ(A)ν(A) thus λ1(A) = ρ(A) exp(2πih/ν(A)) for some 1 ≤ h ≤ ν(A).

(ii), (iii) Let μ be an eigenvalue of A such that μk = ρ(Ak) = ρ(A)k. Since Ak ≥ O

is irreducible, the PF theorem applied to Ak implies that μk is simple, nonzero, and has 
a positive right eigenvector x > 0. Therefore its Jordan space is one dimensional, that 
is the Jordan canonical form of Ak can be written as the direct sum μk ⊕ J ′ where J ′

3 We say that two integer numbers a and b are coprime if gcd(a, b) = 1.
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is the part of the Jordan canonical form of Ak relative to the eigenvalues belonging to 
σ(Ak) \ {μk}. It follows that μ appears in the Jordan decomposition of A in a similar 
way, i.e. x is an eigenvector of A corresponding to μ, it is positive and unique up to a 
scalar multiple. This proves (iii). To prove (ii) assume that two eigenvalues of A, say 
λ1 and λ2, are such that μk = λk

1 = λk
2 = ρ(A)k. Since ρ(A)k is simple, we have that 

μ = λ1 = λ2 and μ is simple. Moreover since Ax = μx then Aν(A)x = μν(A)x. Now 
Aν(A) ≥ O and x > 0 imply μν(A) > 0, i.e. μν(A) = ρ(A)ν(A) = λ1(A)ν(A). Thus λ1(A)
is the only eigenvalue such that λ1(A)k = ρ(A)k, and this implies that ρ(A) ∈ σ(A) if 
and only if λ1(A) = ρ(A).

(iv) Assume that ρ(A) /∈ σ(A) and let us show that gcd(ν(A), k) is not 1. By (ii) we 
see that λ1(A) = ρ(A) exp(2πih/ν(A)) �= ρ(A), hence 1 ≤ gcd(ν(A), h) = ν′ < ν(A). 
Therefore there exists q > 1 such that ν(A) = ν′q and h/ν(A) = s/q for 1 < s ≤ q. Since 
λ1(A)ν(A) = ρ(A)ν(A) and λ1(A)k = ρ(A)k, we have

ei
2πh
ν(A) = ei

2πm
k = ei

2πs
q

for some m ∈ {1, . . . , k − 1}. Hence k = k′q and gcd(ν(A), k) ≥ q > 1. Finally if either 
ν(A) or k are prime, then k is a multiple of ν(A), thus Aν(A) is irreducible.

(v) Let Dx = diag(x), x being a positive right eigenvector relative to λ1(A). Then ∑
j xjaijx

−1
i = λ1(A) for all i = 1, . . . , n. Hence R = λ1(A)−1D−1

x ADx is weakly row 
stochastic and has the same pattern of A; also (Dx)ii > 0 for any i, implies that Rν(A) =
D−1

x (λ1(A)−1A)ν(A)Dx is nonnegative and irreducible and ν(R) ≤ ν(A). Vice versa we 
see that Aν(R) = (λ1(A)DxRD−1

x )ν(R) = Dx(λ1(A)R)ν(R)D−1
x ≥ O, that is ν(A) ≤

ν(R). Setting Dy = diag(y), one observes analogously that C = λ1(A)−1DyAD−1
y is 

power nonnegative weakly column stochastic and that ν(C) ≤ ν(A).
(vi) Let μ1, . . . , μp be the eigenvalues of Ak of modulus ρ(A)k. Since Ak ≥ O is irre-

ducible, the PF theorem implies that μj = ρ(A)k exp(2πihj/p), 1 ≤ hj ≤ p, j = 1, . . . , p. 
The thesis now follows by observing that p coincides with the number of eigenvalues of A
with modulus ρ(A) and recalling that any eigenvalue of A is a k-th root of an eigenvalue 
of Ak.

(vii) Since Ak is nonnegative, irreducible and (Ak)ii > 0, then Ak is a primitive 
matrix. The thesis follows. �

It is straightforward to observe that A reducible implies Ak reducible, for all k. Thus, 
given any matrix A, if there exists an integer k such that Ak is irreducible, then A must 
be irreducible itself. In particular any positive integer power of any primitive matrix 
must be irreducible [1, Thm. 1.8.2]. Actually we observe that an analogous property 
holds for any irreducible nonnegative matrix:

Theorem 3.2. Let A be a square nonnegative matrix. Then A is irreducible if and only if 
there exists a divergent subsequence (am)m ⊂ N such that Aam is irreducible for any m =
1, 2, . . . . In particular, A is primitive if and only if Aam is irreducible with (am)m = N.
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Proof. Assume that A is not primitive. If Aam is irreducible then of course A is irre-
ducible. So let A be irreducible. Let P be the permutation matrix which transforms A
into the matrix B = PAP T in (1). Now let GB = (V, E) be the graph associated with B, 
and observe that since B is irreducible there exists a cycle c(v) for any v ∈ V . Also, 
due to the structure of B, the length of c(v) is a multiple of p, say p sv. Now let s be 
the least common multiple of such sv, s = lcm{sv | v ∈ V }. Then the graph associated 
with Bps contains all the loops, therefore ∃α > 0 such that Bps ≥ αI. As a consequence 
Bps+1 ≥ αB and BmspBsp+1 ≥ αm+1B. Therefore the irreducibility of B implies the 
irreducibility of Bam , for am = msp + 1, m = 0, 1, 2, . . . , and hence the thesis. If A is 
primitive, we refer the reader to [1, Thm. 1.8.2] for a proof of the statement. �

Observe that the assumption A nonnegative in the theorem above is crucial. In fact 
the thesis no longer holds if A is a generic irreducible matrix. In this latter case, indeed, 
the spectral radius ρ(A) might be zero implying that Am = O for any m large enough. As 
an example, consider a positive vector u; since any vector of the form ujei − uiej , i �= j, 
belongs to Span(u)⊥, there exists v ∈ Span(u)⊥ with no zero entries. Then the rank 
one matrix A = vuT is irreducible, but Ak = O is reducible for any k ≥ 2. Nonetheless 
Theorem 3.2 fails to be valid, without the hypothesis A ≥ O, not only for nilpotent 
matrices. In fact there exist matrices A which are irreducible and non-nilpotent but such 
that Am is reducible for all m large enough. As an example consider the matrix

A =
(
vuT vvT

uuT uvT

)
=

(
uuT

)
+

(
vuT vvT

uvT

)
= A1 + A2

By definition A is irreducible, A2
1 = O, and A1A2 = A2A1 = O, then Am = Am

2 is 
reducible for all m ≥ 2.

Let us note furthermore that it may happen that a power nonnegative matrix A is 
irreducible, there exists a k > ν(A) such that Ak is nonnegative and irreducible, but 
Aν(A) is reducible. This fact is shown by the following example and we deduce that the 
hypothesis on the exponents in Theorem 3.1 is sharp in this sense.

Example 3.3. Consider the block matrix

A =
(

B

C

)
, B =

(
1 1
1 1

)
, C =

(
1 −x

0 2

)
It is easy to see that

A2 =
(
BC

CB

)
and A3 =

(
BCB

CBC

)
where

BC =
(

1 2 − x
)
, CB =

(
1 − x 1 − x

)

1 2 − x 2 2
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BCB =
(

3 − x 3 − x

3 − x 3 − x

)
, CBC =

(
1 − x (1 − x)(2 − x)

2 2(2 − x)

)
therefore, for any x ∈ (0, 1), A is irreducible and power nonnegative with ν(A) = 2. 
Also, Aν(A) is reducible whereas Ak, k = 3, is nonnegative and irreducible. From The-
orem 3.1 (iv) it follows that ρ(A) ∈ σ(A) since ν(A) and k are both prime numbers. 
Indeed it is not difficult to observe that σ(A) = {±

√
3 − x, 0}.

The hypothesis Ak ≥ O irreducible for some k ≥ ν(A) implies many properties on 
a power nonnegative matrix and we have already noted that under this assumption 
the matrix A must be irreducible itself. One may therefore conjecture that some of the 
statements (ii)–(vii) of Theorem 3.1 still hold under the weaker assumption that A is 
irreducible and power nonnegative. Unlikely this is not the case. The following example 
shows, for instance, that property (ii) does not hold anymore.

Example 3.4. Consider a nonnegative reducible matrix of the form

X =
(
X1 O

X2 X1

)
where ρ(X1) = ρ(X) ∈ σ(X). Assume that any Xi is n × n symmetric, irreducible and 
rank(Xi) ≤ n − 2. Then kerX1 ∩ kerX2 contains at least one nonzero vector y laying 
outside the cone of nonnegative vectors. Let

Y =
(
O yyT

O O

)
.

By definition we have Y 2 = XY = Y X = O, thus the matrix A = X + Y is irreducible 
and power nonnegative. One easily observes that ν(A) = 2, so ρ(A) or −ρ(A) are eigen-
values of A. In particular we see that ρ(A) ∈ σ(A) but its algebraic multiplicity is two. To 
this end let φM be the characteristic polynomial of M . Since for any invertible matrix Q

it holds (
Q R

S T

)
=

(
Q O

S I

)(
I Q−1R

O T − SQ−1R

)
then, for any complex μ such that |μ| > ρ(A) = ρ(X) = ρ(X1),

φA(μ) = det(μI −A) = det(μI −X1) det
(
μI −X1 −X2(μI −X1)−1yyT )

= det(μI −X1) det
(
μI −X1 −X2

(∑
k≥0

μ−(1+k)Xk
1

)
yyT

)
= det(μI −X1)2 = φX(μ)

Therefore the characteristic polynomials of A and X coincide and aA(ρ(A)) =
aX(ρ(X)) = 2, proving our claim.
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Many authors have looked at extending some combinatorial properties of nonnega-
tive matrices to eventually nonnegative matrices, observing that often the relationship 
between the combinatorial, Jordan and spectral structures of eventually nonnegative ma-
trices is not consistent with that of nonnegative matrices, see for instance [5,9,17] and the 
references therein. In their investigations some examples analogous to the one we gave 
above and many others have been proposed, showing for instance that also statement (iii) 
of Theorem 3.1 is no longer ensured without the request Aν(A) irreducible.

The next two lemmas, which are valuable in themselves, let us prove an interesting 
limit property for power nonnegative matrices.

Lemma 3.5. Let A be power nonnegative such that Am is nonnegative and irreducible for 
some m ≥ ν(A). For any y ∈ Cn we have limk→∞

1
kλ1(A)−kAky = 0.

Proof. Let B = λ1(A)−1A. Theorem 3.1 implies that there exists x > 0 such that 
Bx = x. As a consequence Bsx = x and Bsν(B) ≥ O, for any positive integer s. Therefore 
max� x� ≥ xi =

∑n
j=1(Bsν(B))ijxj ≥ min� x�

∑n
j=1(Bsν(B))ij which implies that

0 ≤
(
Bsν(B))

ij
≤ maxi xi

mini xi
, ∀s ∈ N

i.e. the entries of Bsν(B) are uniformly bounded. For any k, let p ≥ 0 and 0 ≤ q < ν(B)
be such that k = pν(B) + q. For any y ∈ Cn we have

1
(p + 1)ν(B)

∣∣Bpν(B)(Bqy
)∣∣ ≤ 1

k

∣∣Bky
∣∣ ≤ 1

pν(B)
∣∣Bpν(B)(Bqy

)∣∣ (3)

Now since Bpν(B) is entrywise bounded, both left and right hand sides of (3) converge 
to 0 as k diverges, concluding the proof. �
Lemma 3.6. Let A be as in the previous lemma and let x > 0 be the right eigenvector 
relative to λ1(A). Then Cn = Span(x) ⊕ (λ1(A)I −A)Cn.

Proof. Let B = λ1(A)−1A. Then Bx = x and (λ1(A)I −A)Cn = (I −B)Cn. Therefore 
the thesis follows if we prove that Cn = Span(x) ⊕ (I − B)Cn. To this end let Bk =

1
1+k

∑k
i=0 B

i, and let p ≥ 0 and 0 ≤ q < ν(B) be such that k = pν(B) + q, then

(1 + k)Bk = I +
(

p−1∑
i=0

Biν(B)

)(
ν(B)∑
j=1

Bj

)
+ Bpν(B)

q∑
j=1

Bj .

Now arguing as in Lemma 3.5, we observe the following inequalities

Bsν(B) ≤
(

maxi xi

mini xi

)
, thus

∣∣∣∣∣
(

p−1∑
Bsν(B)

) ∣∣∣∣∣ ≤ p

(
maxi xi

mini xi

)
,

s=0 ij
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∣∣∣∣∣
(

m∑
s=0

Bs

)
ij

∣∣∣∣∣ ≤
(

1 − nm+1

1 − n

)
max

t=0,...,m

(
max
ij

|bij |
)t

≤
(

1 − nm+1

1 − n

)(
1 + max

ij
|bij |

)m

which combined with the fact that |(MQ)ij| ≤ n(maxij |mij |)(maxij |qij |) for any two 
matrices M , Q, let us obtain the following bound, holding for any y ∈ Cn

∣∣(Bky)i
∣∣ ≤ n2

ν(B)

(
max

i
|yi|

)(
1 + max

ij
|bij |

)ν(B)
(

1 − nν(B)+1

1 − n

)(
maxi xi

mini xi

)
+ O

(
1
k

)
Therefore for any vector y ∈ Cn the sequence yk = Bky is entrywise bounded, thus there 
exists a convergent subsequence ykj

. Let ỹ ∈ Cn be its limit. We claim that ỹ ∈ Span(x). 
In fact, due to Lemma 3.5, ykj

− Bykj
= 1

1+kj
(I − B1+kj )y j→∞−−−−→ 0 hence Bỹ = ỹ

and Theorem 3.1 implies ỹ ∈ Span(x). Now given any vector y ∈ Cn we write it as 
y = Bkj

y + (I − Bkj
)y and, taking the limit, we get y = ỹ + (y − ỹ ). To conclude the 

proof we need to show that y− ỹ ∈ (I −B)Cn. Since (I −B)Cn is closed, it is enough to 
show that (I−Bkj

)y ∈ (I−B)Cn, and this is easily seen since B = I is a root of the matrix 
polynomial (I −Bk), i.e. for any k, I −Bk = (I −B)f(B) for some polynomial f . �

Lemmas 3.5 and 3.6 are the basis for the following

Theorem 3.7. Let A be a power nonnegative matrix such that Am is nonnegative and 
irreducible for some m ≥ ν(A). Let x, y > 0 be such that Ax = λ1(A)x and yTA =
λ1(A)yT . Then

1
1 + k

k∑
s=0

λ1(A)−sAs k→∞−−−−→ xyT

xTy
> O

Proof. Set Ak = 1
1+k

∑k
s=0 λ1(A)−sAs. If v ∈ (λ1(A)I − A)Cn then there exists 

z ∈ Cn such that v = (λ1(A)I − A)z and, due to Lemma 3.5, Akv = 1
1+k (λ1(A)I −

λ1(A)−kAk+1)z k→∞−−−−→ 0. On the other hand, any v ∈ Span(x) is a fixed point of Ak, 
thus v = limk Akv. Now, by virtue of Lemma 3.6, we can decompose Cn as the direct 
sum Span(x) ⊕ (λ1(A)I − A)Cn, thus for any v ∈ Cn we get limk→∞ Akv ∈ Span(x). 
Applying the same argument to AT we see that, for any v ∈ Cn, limk→∞ AT

k v ∈ Span(y). 
Therefore Ak converges punctually to the rank one matrix αxyT . Finally since Akx = x

for any k, we have (αxyT )x = x implying that α = ‖xyT‖−1. �
As for the case of primitive matrices, we consider the case of power positive matrices 

separately, and observe that the following result holds.

Theorem 3.8. Let A be a power positive matrix, then:

(i) λ1(A) is simple nonzero and |λ2(A)| < |λ1(A)|.
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(ii) (λ1(A)−1A)p p→∞−−−−→ xyT

xTy
> O, where x and y are right and left positive eigenvectors 

of A corresponding to λ1(A), respectively.
(iii) λ1(A)−1A is similar to a weakly doubly stochastic matrix via a diagonal plus rank 

one similarity transform.

Moreover (i) and (ii) are equivalent.

Proof. (i) Since A is power positive, Aν(A) is nonnegative and irreducible, then there 
exists h, 1 ≤ h ≤ ν(A) ≤ π(A), such that λ1(A) = ρ(A) exp(2πih/ν(A)) is simple and 
nonzero. Moreover ρ(Aπ(A)) is a positive simple eigenvalue of Aπ(A) and the remaining 
eigenvalues of Aπ(A) have absolute value smaller than ρ(Aπ(A)). Therefore |λ2(A)| <
|λ1(A)|.

(i) ⇒ (ii) Set briefly λi = λi(A), and let A = XJX−1 be the Jordan decomposition 
of A, where J = λ1 ⊕ J(μ2) ⊕ · · · ⊕ J(μs), μi are the distinct eigenvalues of A except 
for λ1, and J(μi) is the Jordan block relative to the i-th eigenvalue μi. If i �= 1, then the 
spectral radius of each matrix λ−1

1 J(μi) is smaller than 1, hence λ−p
1 J(μi)p converges to 

zero as p diverges. As a consequence

(
λ−1

1 A
)p p→∞−−−−→ Xe1e

T
1X

−1 = xyT

xTy
> O,

where x and y are fixed positive right and left eigenvectors of A corresponding to λ1.
(ii) ⇒ (i) For simplicity let B = λ1(A)−1A and B = xyT (xTy)−1. Since Bp p→∞−−−−→ B

then aB(λ1(B)) ≤ aB(λ1(B)) = 1. Now, for any ε > 0 there exists p such that ‖Bp−B‖ <
ε therefore |λi(Bp) − λi(B)| < ε. In particular, since λ1(B) = 1 and λi(B) = 0 for 
i ≥ 2, |λ1(Bp) − 1| < ε and |λ2(Bp)| < ε. For ε = 1 we get |λ2(Bp)| = |λ2(B)|p =
|λ2(A)|p|λ1(A)|−p < 1, hence |λ1(A)| > |λ2(A)|.

(iii) Let x and y be as in (ii). Since Aπ(A) is irreducible, λ1(A) is nonzero, thus 
yTx = λ1(A)−1yTAx is nonzero. Therefore we can assume w.l.o.g. that yTx = 1. Consider 
the diagonal plus rank one matrix

S = Dy + (e−Dyx)yT (4)

where Dy = diag(y). Observe that Sx = e and ST e = ny, therefore (SAS−1)e = SAx =
λ1(A)e and (SAS−1)T e = nS−TATy = λ1(A)e. The thesis comes by multiplying by 
λ1(A)−1 the previous relations. �
3.1. A proof of the Perron–Frobenius properties of complex eventually nonnegative 
matrices

Theorem 3.1 ensures that a power nonnegative matrix A such that Ak is nonnegative 
and irreducible for some k ≥ ν(A) has a simple nonzero eigenvalue λ1(A) of maximum 
modulus whose right and left eigenvectors can be chosen positive. However in general 
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λ1(A) �= ρ(A). To observe this, one can for instance consider a nonnegative and ir-
reducible matrix M and then set A = ei2πh/kM . Obviously A is power nonnegative, 
moreover Ak is nonnegative and irreducible, but λ1(A) = ρ(A)ei2πh/k �= ρ(A).

However if A is any complex matrix such that Ak is nonnegative for all large enough 
integer powers k (i.e. A is eventually nonnegative), then ρ(A) is an eigenvalue of A with 
nonnegative right and left eigenvectors. This fact has been observed by Noutsos and 
Varga in [12] and precisely it follows as a special case of Theorem 2.3 in that paper. Nev-
ertheless in the next Theorem 3.11 we propose a direct and selfcontained proof of this fact.

Also let us point out briefly here that it may happen that ρ(A) is an eigenvalue of a 
power nonnegative matrix to which correspond nonnegative right and left eigenvectors, 
but A is not eventually nonnegative. As an example consider a positive matrix B with 
ρ(B) > 1, and let

A =
(
B

−I

)
Such matrix A is power nonnegative with ν(A) = 2, ρ(A) = ρ(B) ∈ σ(A) is simple, and 
thus the nonnegative right and left eigenvectors of Aν(A) are eigenvectors of A. However 
(−I)m ≤ O for any odd power m and thus A is not eventually nonnegative.

In order to prove Theorem 3.11 we need two preliminary results stated in Lemmas 3.9
and 3.10 here below. For a complex number z let arg(z) ∈ [0, 2π) denote its argument, 
that is let z = |z|ei arg(z).

Lemma 3.9. For any matrix A there exists an integer k > 1 such that the k-th powers of 
distinct eigenvalues in σ(A) are distinct eigenvalues in σ(Ak).

Proof. Let us show that there exists a k such that for any two eigenvalues λ, μ ∈ σ(A), 
if μk and λk coincide in σ(Ak) then μ = λ. Consider the set

DA =
{
d
∣∣∣ arg(λ1) − arg(λ2) = 2π s

d
, λ1, λ2 ∈ σ(A), s, d ∈ Z, gcd(s, d) = 1, d �= 0

}
Since DA is a finite set, there exists a prime number k /∈ DA. Assume that λk = μk, for a 
given pair λ, μ ∈ σ(A). Therefore two cases are possible: μ = λ or arg(μ) −arg(λ) = 2π p

k

for an integer p. But of course this second case is not possible since k /∈ DA is prime. �
Lemma 3.10. If Ak ≥ O for all k ≥ k0 then λ1(A) = ρ(A).

Proof. Since Ak ≥ O, for all k ≥ k0 there exists μ ∈ σ(A) such that μk = ρ(Ak) = ρ(A)k. 
Therefore |μ| = ρ(A) and arg(μ) ∈ 2πQ. So, let μ1, . . . , μm be the eigenvalues of A such 
that |μi| = ρ(A) and arg(μi) ∈ 2πQ. Precisely, for any i = 1, . . . , m let pi, qi be coprime 
integers such that 1 ≤ pi ≤ qi and

arg(μi) = 2πpi

qi
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Observe that if μk
i is real then only two cases may happen:

(i) pi = qi, i.e. μi is real

or

(ii) pi < qi and qi divides k, i.e. any integer k such that μk
i = ρ(A)k belongs to the 

set qiN.

If (i) holds, the thesis follows. Let us show that (ii) cannot happen for all i = 1, . . . , m. 
In this case, indeed, the only possible exponents k of Ak for which ρ(Ak) is an eigenvalue 
of Ak are those belonging to 

⋃m
i=1 qiN. The absurd now follows since As ≥ O for any 

s ∈ N + k0 but of course 
⋃m

i=1 qiN cannot entirely cover N + k0. �
Theorem 3.11. If A is eventually nonnegative, then ρ(A) ∈ σ(A) and its right and left 
eigenvectors can be chosen nonnegative.

Proof. The fact that ρ(A) ∈ σ(A) directly follows by Lemma 3.10. Due to Lemma 3.9
there exists k such that the k-powers of distinct eigenvalues in σ(A) are distinct eigen-
values in σ(Ak). Therefore the left and right eigenspaces of A relative to ρ(A) coincide 
with the left and right eigenspaces of Ak relative to ρ(Ak), respectively. Hence, since we 
can obviously assume that k ≥ k0, the thesis follows because Ak ≥ O has left and right 
nonnegative eigenvectors relative to ρ(Ak). �
4. Consequences

In this section we collect several relevant corollaries which more or less directly follow 
from our three main Theorems 3.1, 3.7 and 3.8. Some of them are known results proved 
previously by various authors.

4.1. On the relation between power and eventually nonnegative matrices

From the proof of (iv) in Theorem 3.1 it follows that there exists a positive integer 
number q ≤ ν(A) such that k = k′q, ν(A) = ν′q (note that here we do not assume 
q nontrivial), where k is an integer power for which the matrix Ak is nonnegative and 
irreducible. Therefore Aq is irreducible, being Ak irreducible, and ρ(Aq) is a simple 
nonzero eigenvalue of Aq, since λ1(A) = ρ(A) exp( 2πih

ν(A) ) = ρ(A) exp(2πis
q ). Moreover its 

left and right eigenvectors (which thus are unique) can be chosen positive. Also note that 
whenever Am ≥ O for an integer m ≥ ν(A), m has to be a multiple of q. Therefore the 
matrix Aq has the same core properties that a generic nonnegative irreducible matrix 
has. Of course Aq is a power nonnegative matrix and one could guess it to be eventually 
nonnegative or even nonnegative. This is in fact the case:
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Corollary 4.1. Let A be power nonnegative such that Ak is nonnegative and irreducible 
for some k ≥ ν(A). If q = gcd(ν(A), k), then Aq is eventually nonnegative.

Proof. Since q = gcd(ν(A), k) there exist integers ν′ and k′ such that ν(A) = ν′q, 
k = k′q and gcd(ν′, k′) = 1. Let F(ν′, k′) = k′ν′ − k′ − ν′ be the Frobenius number of 
ν′ and k′ [14]. Since ν′ and k′ are coprime then any m > F(ν′, k′) can be written as 
m = aν′ + bk′ for suitable nonnegative integers a, b. Thus (Aq)m = Aaν(A)Abk ≥ O for 
any m > F(ν′, k′). �

Of course any eventually nonnegative matrix is power nonnegative, but a more no-
ticeable relation is revealed by Corollary 4.1. Note for instance that we can immediately 
conclude that the matrix A of Example 3.3 is eventually nonnegative.

Also a more strict connection between eventually positive and power positive matrices 
is shown here below in Corollary 4.2.

Corollary 4.2. A is power positive if and only if there exist integers h, k, such that 
e2πih/kA is eventually positive.

Proof. Due to Theorem 3.8, if A is power positive then λ1(A) = ρ(A)eiθ, θ = 2πih/π(A). 
Moreover, by Theorem 3.8 (λ1(A)−1A)k converges to a positive matrix (as k diverges). 
Therefore, if B = e−iθA, then ρ(B) = ρ(A) and (ρ(A)−1B)k is positive for all k large 
enough, implying the thesis. The reverse implication is obvious: since B = e2πih/kA is 
eventually positive, there exists s such that Ask > O. �

Observe that the same relation cannot hold between power nonnegative and eventu-
ally nonnegative matrices. This is shown by the following simple example. Consider the 
matrix

A =
(

I

−I

)
where the identity matrices are square matrices of the same order. One can easily see 
that ν(A) = 4 and Aν(A) = I. Therefore, as already noted, A cannot be eventually 
nonnegative. Moreover, eiθA is not eventually nonnegative for any θ ∈ R. In fact, for any 
integer p, the nonzero entries of (eiθA)pν(A)+1 are eiθ and −eiθ, which cannot be both 
nonnegative numbers.

Let us recall for completeness that a converse version of Corollary 4.1 follows by 
inspecting the proof of [9, Thm. 3.4]. We state it here below:

Theorem 4.3. (See [9, Thm. 3.4].) Let A be a real eventually nonnegative matrix. If A
is nonsingular, or zero is a simple eigenvalue of A, then there exists k ≥ 1 such that Ak

is nonnegative and irreducible.
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Note indeed that, by applying the previous theorem to Aq, we get: If there exists an 
integer q such that Aq is eventually nonnegative, and if A is nonsingular or has zero as 
simple eigenvalue, then there exists k ≥ q such that Ak is nonnegative and irreducible.

The relation with Corollary 4.1 is made evident by this latter way of stating Theo-
rem 4.3.

4.2. M-type matrices based on power nonnegative matrices

Nonnegative matrices play a central role in the theory of M-matrices (see f.i. [2] or [4]). 
An M-matrix is a matrix of the form M = σI − A, where A ≥ O and σ ≥ ρ(A). One 
of the main properties of such matrices concerns their inverse; it is known indeed that 
the inverse of a nonsingular M-matrix is nonnegative, whence is positive if, in addition, 
the M-matrix is irreducible. The same thing cannot be said in the general case for a 
matrix of the form σI −A, with A power nonnegative. In [8] examples are shown in this 
direction. Nevertheless by virtue of Theorem 3.7 we obtain the following further result, 
showing that if |σ| is not too big and A has a nonnegative irreducible power, then the 
inverse of I − σ−1A has positive real part.

To avoid ambiguities let us agree that the real and imaginary parts of a ma-
trix M = (mij)ij are hereafter denoted by ReM and ImM , denoting the matrices 
Re(M)ij = Re(mij) and Im(M)ij = Im(mij), respectively.

Theorem 4.4. Let A be a power nonnegative matrix such that Ak ≥ O is irreducible for 
some k ≥ ν(A). There exists ε > 0 such that if |λ1(A) − σ| < ε and |σ| > |λ1(A)| then 
Re(I − σ−1A)−1 is a positive matrix.

Proof. For ease of notation let λ1 = λ1(A). Theorem 3.7 shows that for any k large 
enough

k∑
m=0

λ−m
1 Am

has positive real part. Now let φ be such that σ − λ1 = ε0e
iφ and consider the matrix

Mk =
k∑

m=0
σ−mAm

Since the entries of such matrix depend continuously on ε0, a standard continuity argu-
ment shows that there exists a positive ε such that if ε0 ∈ (0, ε) then ReMk is positive, 
for any k large enough. Finally since |σ| > |λ1|, then (I − σ−1A)−1 = limk→∞ Mk and 
we conclude that Re(I − σ−1A)−1 > O. �

We would point out that, combining [9, Thm. 3.4], Theorems 3.11 and 4.4 above, it 
can be easily observed that:
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Corollary 4.5. (See [8, Thm. 4.2].) If A is a real eventually nonnegative matrix such that 
either A is nonsingular or zero is a simple eigenvalue of A, then there exists λ > ρ(A)
such that if λ > σ > ρ(A) then (σI −A)−1 > O.

4.3. The case of real matrices

It immediately follows from point (ii) of Theorem 3.8 that if A is power positive, then:

• ∃k0 such that Re(λ1(A)−kAk) > O for any k ≥ k0.
• ∀ε > 0 ∃kε such that ‖Im(λ1(A)−kAk)‖ < ε, ∀k ≥ kε.

It is clear therefore that when A is real, also a converse direction of points (i) and (ii) 
in Theorem 3.8 holds. We state this fact in detail in the next Corollary 4.6, whose 
proof may be easily derived as a special case of our Theorem 3.8. We want to point out 
that Corollary 4.6 is a well known result, see for instance [6, Lemma 2.1 and Thm. 2.2]
and [13].

Corollary 4.6. If A is a real power positive matrix, the following statements are equivalent:

• There exists an odd integer k ≥ π(A) such that Ak > O.
• ρ(A) ∈ σ(A), it dominates the modulus of the other eigenvalues, the right and left 

eigenvectors x, y relative to ρ(A) are unique and can be chosen positive.

As a simple consequence of Corollary 4.2 we deduce Theorem 3 in [3] and Theorem 1 
in [7], here below stated as Corollaries 4.7 and 4.8. Their proof is omitted.

Corollary 4.7. (See [3, Thm. 3].) A real matrix A is power positive if and only if A or −A

are eventually positive.

Corollary 4.8. (See [7, Thm. 1].) A real matrix A is power positive and Ak > O for an 
odd integer k ≥ π(A) if and only if A is eventually positive.

Finally note that a bit more than what is claimed in Corollary 4.8 can be said. To our 
knowledge this latter consequence, proved in Corollary 4.9 below, has not been observed 
before.

Corollary 4.9. If A is a real power nonnegative matrix such that Ak is nonnegative and 
irreducible for an odd integer k ≥ ν(A), then ρ(A) ∈ σ(A).

Proof. Since A is real, both λ1(A) and λ1(A) (its complex conjugate) belong to σ(A). If 
λ1(A) �= λ1(A) then the multiplicity of ρ(Ak) as an eigenvalue of Ak is larger or equal 
than two. But this is not possible since Ak ≥ O is irreducible. Hence λ1(A) = ±ρ(A). 
Finally the oddness of k implies λ1(A) = ρ(A). �
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4.4. The case of weakly stochastic matrices

We recall that, in our notation, a weakly stochastic matrix A is a matrix such that ∑
i aij = 1, for any j = 1, . . . , n (we do not require the nonnegativity). Hence 1 is always 

an element of the spectrum of a weakly stochastic matrix. This fact let us state the 
following:

Corollary 4.10. Let A be weakly stochastic and power nonnegative. Then 1 = ρ(A) ∈
σ(A). Moreover if Am is nonnegative and irreducible for some m ≥ ν(A), then proper-
ties (ii)–(vii) of Theorem 3.1 hold for y = e.

Proof. We only need to prove that 1 = ρ(A). It is easy to observe that A weakly stochas-
tic implies Ak weakly stochastic for any integer k. Let λ ∈ σ(A), then

|λ|ν(A) =
∣∣λν(A)∣∣ ≤ ρ

(
Aν(A)) ≤ ∥∥Aν(A)∥∥

1 = max
j

∑
i

∣∣(Aν(A))
ij

∣∣ = 1

and as a consequence ρ(A) ≤ 1. We conclude since 1 ∈ σ(A). �
By inspecting the proof of Theorem 3.1 one notes that property (v) in it actually only 

requires that A has a positive dominant eigenvector and that λ1(A) is nonzero. This fact 
is stated by the next Corollary 4.12 where the nilpotent case is considered as well.

Observe that if ρ(A) = 0, then A is nilpotent and thus A is power nonnegative. 
Moreover, obviously, if an integer p is such that Ap = O then p ≥ ν(A). However, 
under the assumption that A has a positive dominant eigenvector we see that p = ν(A). 
Namely, we have the following

Lemma 4.11. Let A be power nonnegative such that ρ(A) = λ1(A) = 0 and such that A
has a positive dominant eigenvector (i.e. a positive eigenvector relative to zero). Then 
Aν(A) = O.

Proof. Since Ax = 0 for a positive vector x, then Aν(A)x = 0. If indices i, j exist such 
that (Aν(A))ij > 0 then (Aν(A)x)i =

∑
k(Aν(A))ikxk ≥ (Aν(A))ijxj > 0 which yields an 

absurd. �
Corollary 4.12. Consider a square matrix A.

• If ρ(A) > 0, then A is power nonnegative, and there exists a positive dominant 
eigenvector of A if and only if λ1(A)−1A is similar to a weakly row stochastic 
power nonnegative matrix S via a positive definite diagonal similarity transform, 
and ν(S) = ν(A).

• If ρ(A) = 0 then A is power nonnegative and Aν(A) = O. Moreover there exists a 
positive dominant eigenvector of A if and only if A is similar via a positive definite 
diagonal similarity transform to a nilpotent matrix L whose rows sum up to zero.
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Proof. Let ρ(A) > 0. Assume that λ1(A)−1A is similar to a weakly stochastic power 
nonnegative matrix S via a positive definite diagonal similarity transform, that is 
there exists a diagonal matrix D, (D)ii > 0, such that λ(A)−1A = DSD−1. Then 
x = De > 0 is a positive eigenvector of A, λ1(A) is its eigenvalue and λ1(A)−ν(S)Aν(S) =
DSν(S)D−1 ≥ O, thus

λ1
(
λ1(A)−1A

)
= λ1(A)−1ρ(A)e2πih/ν(S) = 1.

This implies λ1(A)ν(S) > 0 and Aν(S) ≥ O, which combined with Sν(A) =
D(λ1(A)−1A)ν(A)D−1 ≥ O, implies ν(A) = ν(S). The reverse implication can be proved 
analogously. Now let ρ(A) = 0 and assume that L = D−1AD is such that Le = 0, for a 
diagonal D with (D)ii > 0. Then x = De is positive and Ax = DLD−1De = 0. Since 
ρ(A) = 0, from Lemma 4.11 we get Aν(A) = O. Again, the reverse implication can be 
proved the same way. �

We conclude with an example of a class of power nonnegative matrices.

Example 4.13. Let θ ∈ C and consider the weakly doubly stochastic circulant matrix

C(θ) =

⎛⎜⎜⎜⎜⎝
1 − (n− 1)θ θ · · · θ

θ 1 − (n− 1)θ
. . .

...
...

. . . . . . θ

θ · · · θ 1 − (n− 1)θ

⎞⎟⎟⎟⎟⎠ .

If E = eeT we briefly write C(θ) = (1 − nθ)I + θE. Since Ep = np−1E, we have

C(θ)k =
(
(1 − nθ)I + θE

)k =
k∑

i=0

(
k

i

)
(1 − nθ)k−iθiEi

= (1 − nθ)kI + n−1

(
k∑

i=1

(
k

i

)
(1 − nθ)k−i(nθ)i

)
E

= (1 − nθ)kI + 1 − (1 − nθ)k

n
E

thus C(θ)k = C(θk) where θk = n−1(1 − (1 − nθ)k) and k ≥ 1. Now observe that 
C(θk) ≥ O if and only if 0 ≤ θk ≤ (n − 1)−1 that is

C(θk) ≥ O ⇐⇒ − 1
n− 1 ≤ (1 − nθ)k ≤ 1. (5)

It is now clear how to exhibit an example of power nonnegative matrix. Consider any 
integer s ≥ 2 and let As be the matrix As = C( 1

ne
iπs ). Note that As is not real. Now let 

us observe that, for any integer m, A2ms
s is real. In fact,
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(
1 − eiπ/s

)2ms =
(

2ms

ms

)
(−1)mseiπm +

ms−1∑
p=0

(
2ms

p

)
(−1)p

(
ei

πp
s + ei

π(2ms−p)
s

)

=
(

2ms

ms

)
(−1)m(s+1) + 2

ms−1∑
p=0

(
2ms

p

)
(−1)p cos

(
πp

s

)
∈ R

and thus A2ms
s = C(1−(1−eiπ/s)2ms

n ) is real. Then note that for any fixed s ≥ 3 we have

0 <
∣∣1 − ei

π
s

∣∣2 = 2
(

1 − cos π
s

)
≤ 2

(
1 − cos π3

)
= 1

=⇒ 0 <
∣∣(1 − ei

π
s

)2ms∣∣ =
∣∣1 − ei

π
s

∣∣2ms ≤ 1

=⇒ −1 ≤
(
1 − ei

π
s

)2ms ≤ 1,
(
1 − ei

π
s

)2ms �= 0

=⇒ 0 <
(
1 − ei

π
s

)4ms ≤ 1

By (5) and the inequality just obtained we see that the real matrix A4ms
s = (A2ms

s )2 =
C(1−(1−eiπ/s)4ms

n ) is nonnegative. So, for any s ≥ 3, the matrix As = C( 1
ne

iπs ) is a 
non-real matrix such that A4ms

s ≥ O for all integers m = 1, 2, 3, . . . .
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