Several families of rank-two vector bundles on Hirzebruch surfaces are shown to consist of all very ample, uniform bundles. Under suitable numerical assumptions, the projectivization of these bundles, embedded by their tautological line bundles as linear scrolls, are shown to correspond to smooth points of components of their Hilbert scheme, the latter having the expected dimension. If e = 0,1 the scrolls fill up the entire component of the Hilbert scheme, while for e = 2 the scrolls exhaust a subvariety of codimension 1.

Besana, G., Fania, M., Flamini, F. (2015). On families of rank-2 uniform bundles on Hirzebruch surfaces and Hilbert schemes of their scrolls. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 47, 27-44 [10.13137/0049-4704/11217].

On families of rank-2 uniform bundles on Hirzebruch surfaces and Hilbert schemes of their scrolls

FLAMINI, FLAMINIO
2015-01-01

Abstract

Several families of rank-two vector bundles on Hirzebruch surfaces are shown to consist of all very ample, uniform bundles. Under suitable numerical assumptions, the projectivization of these bundles, embedded by their tautological line bundles as linear scrolls, are shown to correspond to smooth points of components of their Hilbert scheme, the latter having the expected dimension. If e = 0,1 the scrolls fill up the entire component of the Hilbert scheme, while for e = 2 the scrolls exhaust a subvariety of codimension 1.
2015
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Hilbert schemes; Moduli spaces; Rational surfaces; Ruled threefolds; Vector bundles; Vector bundles, Rational surfaces, Ruled threefolds, Hilbert schemes, Moduli spaces
Besana, G., Fania, M., Flamini, F. (2015). On families of rank-2 uniform bundles on Hirzebruch surfaces and Hilbert schemes of their scrolls. RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE, 47, 27-44 [10.13137/0049-4704/11217].
Besana, G; Fania, M; Flamini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
BFF2_20150622_Rendiconti.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 353.79 kB
Formato Adobe PDF
353.79 kB Adobe PDF Visualizza/Apri

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/107807
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact