
Rend. Istit. Mat. Univ. Trieste
Volume 47 (2015), 1–18 (electronic preview)

On families of rank-2 uniform bundles

on Hirzebruch surfaces and

Hilbert schemes of their scrolls

GianMario Besana,
Maria Lucia Fania,
Flaminio Flamini

To Emilia Mezzetti, in the occasion of her recent life milestone.

Abstract. Several families of rank-two vector bundles on Hirzebruch
surfaces are shown to consist of all very ample, uniform bundles. Under
suitable numerical assumptions, the projectivization of these bundles,
embedded by their tautological line bundles as linear scrolls, are shown
to correspond to smooth points of components of their Hilbert scheme,
the latter having the expected dimension. If e = 0, 1 the scrolls fill up
the entire component of the Hilbert scheme, while for e = 2 the scrolls
exhaust a subvariety of codimension 1.

Keywords: Vector bundles, Rational surfaces, Ruled threefolds, Hilbert schemes,
Moduli spaces
MS Classification 2010: Primary 14J30,14J26,14J60,14C05; Secondary
14D20,14N25,14N30

1. Introduction

Vector bundles over smooth, complex, varieties and their moduli spaces, have
been intensely studied by several authors over the years (see e.g. the bibliog-
raphy in [9] for an overview).

In looking at the landscape of vector bundles over smooth projective va-
rieties, with the eyes of a classical projective geometer, it is natural to won-
der about the relationship between that landscape and the parallel world of
the families of projective varieties obtained by embedding the projectivized
bundles, when possible. Several authors have investigated Hilbert schemes
of projective varieties that arise naturally as embeddings of projectivization
of vector bundles, when the appropriate conditions of very ampleness for the
bundles themselves, or equivalently for the tautological line bundle on their
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projectivization, hold.

In the first case of interest, i.e. rank-two, degree d vector bundles over
genus g curves C, the paper of C. Segre, [33], has to be considered as a corner-
stone. Segre’s work has indeed inspired several investigations on surface scrolls
in projective spaces (cf. e.g. [27, 3, 25, 26]) as well as a recent systematic study
of Hilbert schemes of such surfaces, [11, 12, 13]. Morever, the fact that any
rank-two vector bundle E on C is an extensions of line bundles is translated in
Segre’s language in terms of Hilbert schemes of unisecants on the ruled surface
PC(E), with fixed degree w.r.t. its tautological line bundle. This viewpoint
has been recently considered in [5, 14, 15, 30, 31], where the authors study
questions on Brill-Noether loci in the moduli space UC(d) (SUC(L), resp.) of
semi-stable, rank-two vector bundles with fixed degree d (fixed determinant
L ∈ Picd(C), resp.) on C, just in terms of extensions of line bundles and
Hilbert schemes of unisecants. This series of papers leverages the relationship
between the Hilbert scheme approach and the vector-bundle one, in order to
obtain results on rank-two vector bundles on curves using primarily projective
techniques of embedded varieties.

In attempting to extend this comparative analysis of the two approaches
to vector bundles, and correspondingly linear scrolls, over higher dimensional
varieties, one is naturally led to consider rank-two vector bundles over ruled
surfaces on one hand, and three dimensional linear scrolls embedded with low
codimension on the other, as first steps. As far as the latter are concerned, if the
codimension is 2, it is known [32] that there are only four such examples: the
Segre scroll, the Bordiga scroll, the Palatini scroll, the K3-scroll. The first two
examples are varieties defined by the maximal minors of an appropriate matrix
of linear forms and their Hilbert scheme has being described by Ellingsrud
[16]. More generally the Hilbert scheme of subvarieties of positive dimension in
projective space which are cut by maximal minors of a matrix with polynomial
entries is considered in [18, 29]. As for the Palatini scroll, its Hilbert scheme is
described in [22], while its natural generalizations as Hilbert schemes of scrolls
that arise as degeneracy loci of general morphisms φ : O⊕mP2k−1 −→ ΩP2k−1(2) are
studied in [17] and [18]. Further examples of K3-scrolls are presented in [23].
Turning our attention to rank-two vector bundles over ruled surfaces, one first
has the complete classification given by Brosius [10], who introduced a canonical
way of representing them as extensions of suitable coherent sheaves as in Segre’s
approach for curves. An equivalent way of obtaining such rank-two bundles
as extensions, naturally compatible with Brosius’ model, was introduced by
Aprodu and Brinzanescu, [9, 2], who studied moduli spaces of such vector
bundles, independently of any notion of stability.

Notwithstanding this thorough understanding of such bundles, in order to
implement our program of investigation, one has to deal with the significant
difficulty of establishing the very ampleness of the vector bundle (or tautolog-
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ical line bundle). Even just for rank-two vector bundles over rational ruled
surfaces this is a delicate problem. Alzati and the first author, [1], gave a
numerical criterion that enables one, in some cases, to establish the necessary
very ampleness. This criterion, joined with a need to complete the study of
smooth projective varieties of small degree, [20], [21], [6], motivated the authors
to investigate Hilbert schemes of threefold scrolls given by a particular family
of vector bundles E , of rank 2 over Hirzebruch surfaces Fe.

In a series of three papers, the authors dealt with a family of rank-two
vectors bundles E with first Chern class c1(E) = 3C0 +λf, where C0 and f are
the standard generators of the Picard group of Fe. In particular, if e = 0, 1, in [7]
and [8] the authors show that the irreducible component of the Hilbert scheme
containing such scrolls is generically smooth, of the expected dimension, and
that its general point is actually a threefold scroll, and thus the corresponding
component of the Hilbert scheme is filled up completely by scrolls. Then in [19],
the second and third author extended the study of the same family of bundles
(and scrolls) to the cases with e ≥ 2. In particular, they showed that, similarly
to the previous cases, there exists an irreducible component of the Hilbert
scheme containing such scrolls, which is generically smooth, of the expected
dimension, with the given scroll corresponding to a smooth point. In contrast
to the previous cases though, the family of constructed scrolls surprisingly does
not fill up the whole component. A candidate variety to represent the general
point of the component was also constructed, and it was shown that one can
then flatly degenerate a given scroll to the new variety, in such a way that the
base scheme of the flat, embedded degeneration is entirely contained in the
given component.

In this note we observe that, if one allows the degree of the embedded scrolls
to be relatively high, the criterion in [1] establishes the very ampleness of other
families of vector bundles E over Fe, with c1(E) = 4C0 + λf. All very ample
rank-two bundles in these families are shown to be uniform, with splitting type
(3, 1), see Proposition 3.1. Investigating fully the cohomological properties of
the scrolls considered here would require an extensive enumeration of possible
cases, according to sets of values for the parameters involved, see Remark 4.3,
that goes beyond the scope of this note. Therefore, in the second part of this
work, scrolls over surfaces Fe with e ≤ 2 are considered, for which convenient
cohomology vanishing can be obtained, see Theorem 4.2. Nonetheless, the
overall framework is quite general and could be adapted to encompass the rest
of the bundles in the identified uniform families. Under the new assumptions,
Theorem 4.2 shows that the scrolls under consideration are smooth points of
a component of the Hilbert scheme of embedded projective varieties with the
same Hilbert polynomial, with the expected dimension. Leveraging both the
vector bundle approach and the Hilbert scheme one, Theorem 4.6 shows that
scrolls obtained from our families of vector bundles fill up their component
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of the Hilbert scheme if e = 0, 1 but exhaust a subvariety of codimension 1
when e = 2. The last result extends to this new class of scrolls results from
[19]. Beyond the obvious goal of extending these results to scrolls over Fe for
e ≥ 3, a few other natural questions arise. Following [19], in the cases in which
our scrolls fill out a positive codimension subvariety of the component of the
Hilbert scheme, can one describe a variety Z which is a candidate to represent
the general point of such component? Assuming that a description of a variety
Z as above is achieved, can one interpret the projective degeneration of Z to
a scroll of ours in terms of vector bundles on Hirzebruch surfaces? All these
questions will be addressed in forthcoming works.
Acknowledgments: The first author acknowledges support from the interim
Provosts of DePaul University, Patricia O’ Donoghue and David Miller. The
second and third author acknowledge partial support by MIUR funds, PRIN
2010-2011 project “ Geometria delle Varietà Algebriche”.

2. Notation and Preliminaries

Throughout this paper we will use the following notation:

X is a smooth, irreducible, complex projective variety of dimension 3 (or
simply a 3-fold);

OX is the structure sheaf of X;

χ(F) =
∑3
i=0(−)ihi(X,F) is the Euler characteristic of any coherent

sheaf F on X;

F|Y is the restriction of F to any subvariety Y ⊂ X;

KX (or simply K, when the context is clear) is a canonical divisor on X;

ci = ci(X) is the ith Chern class of X;

ci(E) is the ith Chern class of a vector bundle E on X;

if L is a very ample line bundle on X, then d = degX = L3 is the degree
of X in the embedding given by L;

if S is a smooth surface, ≡ will denote the numerical equivalence of divi-
sors on S and, if W ⊂ S is any closed subscheme, we will simply denote
by JW its ideal sheaf in OS .

Cartier divisors, their associated line bundles and the invertible sheaves
of their holomorphic sections are used with no distinction. Mostly additive
notation is used for their group. Juxtaposition is used to denote intersection
of divisors. For any notation and terminology not explicitly listed here, please
refer to [28].
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Definition 2.1. Let X be a 3-fold and L be an ample line bundle on X. The
pair (X,L) is called a scroll over a normal variety Y if there exist an ample
line bundle M on Y and a surjective morphism ϕ : X → Y , with connected
fibers, such that KX + (4− dimY )L = ϕ∗(M).

When Y is smooth and (X,L) is a scroll over Y , then (cf. [4, Prop. 14.1.3])
X ∼= P(E), where E = ϕ∗(L) and L is the tautological line bundle on P(E).
Moreover, if S ∈ |L| is a smooth divisor, then (see e.g. [4, Thm. 11.1.2]) S is
the blow up of Y at c2(E) points; therefore χ(OY ) = χ(OS) and

d := L3 = c21(E)− c2(E). (1)

In this paper, we will consider three dimensional scrolls X whose base, Y,
is the Hirzebruch surface Fe = P(OP1 ⊕OP1(−e)), with e ≥ 0 an integer. If π :
Fe → P1 denotes the natural projection, then Num(Fe) = Z[C0]⊕ Z[f ], where
C0 is the unique section corresponding to OP1 ⊕ OP1(−e) →→ OP1(−e) on P1,
and f = π∗(p), for any p ∈ P1. In particular, it is C2

0 = −e, f2 = 0, C0f = 1.
Let E be a rank-two vector bundle over Fe. Then c1(E) ≡ aC0 + cf , for

some a, c ∈ Z, and c2(E) = γ ∈ Z. In this context, following Aprodu and
Brinzanescu, [2, § 1], one can consider two numerical invariants associated to
E , as follows :

(i) Let f ' P1 be a general fibre of the map π. Then E|f ∼= Of (d1)⊕Of (d2),
where the pair (d1, d2) is called the generic splitting type of E , and where
d2 ≤ d1, d1 + d2 = a. Such an integer d1 is the first numerical invariant
of E .

(ii) The integer r defined as:

−r := Inf {` ∈ Z|H0(E(−d1 C0+` f)) = H0(E(−d1 C0)⊗π∗(OP1(`))) 6= 0}

is the second numerical invariant of E .

Recall that the vector bundle E is said to be uniform if the splitting type
(d1, d2) as in (i) is constant for any fibre f (cf. e.g. [2, Definition 3]).

3. A family of rank-two uniform vector bundles over Fe.

Alzati and Besana, [1, p. 1211, Example 1], considered rank-two vector bundles
on Fe constructed in the following way: let

L ≡ C0 + blf and M ≡ 3C0 + bmf (2)

be two line bundles on Fe with the assumption

bm − bl − e− 2 > 0, (3)
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and let W be a zero-dimensional subscheme consisting of two distinct, reduced
points on a fixed fibre f. Then one gets a rank-two vector bundle E fitting in
the following exact sequence

0→ L→ E →M ⊗ JW → 0. (4)

Assuming that

bl > −2 and bm ≥ 3e+ 6, (5)

it follows that the vector bundle E is very ample (see [1, Theorem 4.2]).
The second of the assumptions (5) can be written as bm = 3e+ 6 + t with

t ≥ 0. Thus, from (3), we get

bl < 2e+ 4 + t (6)

From (4), in particular, one has

c1(E) = 4C0 + (bm + bl)f and c2(E) = L ·M + 2 = γ.

For simplicity of notation, set bl = b. Under our assumptions, we have

bl + bm = b+ 3e+ 6 + t and c2(E) = γ = 3b+ 8 + t.

Proposition 3.1. Let E be any rank-two vector bundle as in (4), for which
assumptions (5) and (6) hold. Then E is uniform, of splitting type (3, 1).

Proof. Since E is a very ample, rank-two vector bundle with c1(E) = 4C0 +
(bm + bl)f then the generic splitting type of E is either (3, 1) or (2, 2).

Claim 1. (2, 2) cannot occur as generic splitting type.

Proof of Claim 1. With notation as above, consider, as in [2, Theorem 1], the
following integer `(c1, c2, d1, r) := γ + a(d1e − r) − (bl + bm)d1 + 2d1r − d21e
and assume by contradiction that (2, 2) occurs as generic splitting type, i.e.
d1 = d2 = 2. Then, with our notation and under our numerical assumptions, it
follows that

`(c1, c2, 2, r) = 3b+ 8 + t+ 4(2e− r)− 2(3e+ b+ 6 + t) + 4r − 4e (7)

= b− t− 2e− 4.

By (6) it follows that `(c1, c2, d1, r) < 0 which contradicts [2, Theorem 1]. Thus
(2, 2) cannot occur as generic splitting type.

Claim 1 implies that E has generic splitting type (3, 1). To show that E is
uniform, by [2, Corollary 5], it is enough to show that `(c1, c2, 3, r) = 0. In
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order to compute `, the invariant r must first be considered. Tensoring the
exact sequence (4) by −3C0 ⊗ π∗(OP1(`)) = −3C0 + `f gives

0→ −2C0 + (b+ `)f → E(−3C0 + `f)→ (3e+ 6 + t+ `)f ⊗ JW → 0. (8)

Note that H0(−2C0+(b+`)f) = 0 and, by Serre duality, H1(−2C0+(b+`)f) =
H1(−(e+2+b+`)f) = H1(P1,OP1(−(e+2+b+`))) = 0 if −e−2−b−` ≥ −1,
that is if

` ≤ −e− 1− b. (9)

In this range it follows that H0(E(−3C0+`f)) = H0((3e+6+t+`)f⊗JW ) 6= 0
if and only if 3e + 6 + t + ` ≥ 1 as, by construction, W is a zero-dimensional
scheme consisting of two distinct points on a fibre. Thus

` ≥ −3e− 5− t. (10)

Notice that for (9) and (10) to be compatible it must be b ≤ 2e+ 4 + t, which
certainly holds by (6). Thus we conclude that r = 3e+ 5 + t.

We finally can compute

`(c1, c2, 3, r) = 3b+8+t+4(3e−3e−5−t)−3(b+3e+6+t)+6(3e+5+t)−9e = 0,

which implies that E is uniform.

Let E be a rank-two vector bundle over Fe as in Proposition 3.1. Then

c1(E) ≡ 4C0 + (b+ 3e+ 6 + t)f, c2(E) = γ = 3b+ 8 + t, for t ≥ 0, (11)

and E is uniform, of splitting type (3, 1). Thus, (see [1, Prop.7.2] and [10]),
there exists an exact sequence

0→ A→ E → B → 0, (12)

where A and B are line bundles on Fe such that

A ≡ 3C0 + (3e+ 5 + t)f and B ≡ C0 + (b+ 1)f. (13)

From (12), in particular, one has c1(E) = A+B and c2(E) = A ·B. Note
also that since E is very ample it follows that B is ample and thus b > e− 1.

Using (12), we can compute cohomology of E , A, and B. Indeed, we have:

Proposition 3.2. Let E be a rank-two vector bundle over Fe as in Proposition
3.1. Then

hi(E) = hi(A) = hi(B) = 0, for i ≥ 1 and h0(E) = 5e+ 2b+ 4t+ 28.
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Proof. For dimension reasons, it is clear that hj(E) = hj(A) = hj(B) = 0, j ≥
3. Recalling that KFe

≡ −2C0 − (e+ 2)f, and using Serre duality, it is:

h2(A) = h0(−5C0−(4e+7+t)f) = 0 and h2(B) = h0(−3C0−(e+3+b)f) = 0.

In particular, this implies that h2(E) = 0. In order to show that h1(B) =
h1(A) = 0 first notice that R1π∗(B) = R1π∗(O(1)) ⊗ OP1(b+ 1) = 0 and
R1π∗(A) = R1π∗(O(3)) ⊗ OP1(3e+ 5 + t) = 0 (see for example [28, p.253]).
Recalling that b > e− 1, and t ≥ 0, Leray’s isomorphism then gives

h1(B) = h1(P1, R0π∗(C0 + (b+ 1)f))

= h1(P1, (OP1 ⊕OP1(−e))⊗OP1(b+ 1))

= h1(P1,OP1(b+ 1)) + h1(P1,OP1(b+ 1− e)) = 0,

and

h1(A) = h1(P1, R0π∗(3C0 + (3e+ 5 + t)f))

= h1(P1, Sym3(OP1 ⊕OP1(−e))⊗OP1(3e+ 5 + t))

= h1(P1, (OP1 ⊕OP1(−e)⊕OP1(−2e)⊕OP1(−3e))⊗OP1(3e+ 5 + t))

= h1(P1,OP1(3e+ 5 + t)⊕OP1(2e+ 5 + t)⊕OP1(e+ 5 + t)

⊕OP1(5 + t))

= 0.

Similarly we get that

h0(A) = h0(P1,OP1(3e+ 5 + t)⊕OP1(2e+ 5 + t)⊕OP1(e+ 5 + t)

⊕OP1(5 + t))

= 3e+ 6 + t+ 2e+ 6 + t+ e+ 6 + t+ 6 + t

= 6e+ 4t+ 24,

h0(B) = h0(P1,OP1(b+ 1)⊕OP1(b+ 1− e))
= 2b+ 4− e,

and thus

h0(E) = h0(A) + h0(B) = 6e+ 4t+ 24 + 2b+ 4− e = 5e+ 2b+ 4t+ 28.
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4. 3-dimensional scrolls over Fe and their Hilbert schemes

As all vector bundles in the the family introduced in § 3 are very ample, they
give rise to a corresponding family of threefolds embedded in projective space
as linear scrolls over Fe. In this section we will show that such threefolds cor-
respond to smooth points of suitable components of the appropriate Hilbert
scheme, and that in some cases (e.g. e = 2) they fill up only a codimension
e− 1 subvariety of such a component.

Let E be a very ample rank-two vector bundle over Fe as in Proposition 3.1,
with c1(E) and c2(E) as in (11). As observed above, E fits in an exact sequence
as in (12), where A and B are as in (13). With this set up, let (P(E),OP(E)(1))
be the 3-dimensional scroll over Fe, and ϕ : P(E)→ Fe be the usual projection.

Proposition 4.1. The tautological line bundle L = OP(E)(1) defines an embed-
ding

Φ := Φ|L| : P(E) ↪→ X ⊂ Pn,

where X = Φ(P(E)) is smooth, non-degenerate, of degree d, with

n = 5e+ 2b+ 4t+ 27 and d = L3 = 8e+ 5b+ 7t+ 40. (14)

Moreover,
hi(X,L) = 0, i ≥ 1. (15)

Proof. The very ampleness of L follows from that of E . The expression for the
degree d of X in (14) follows from (1). Leray’s isomorphisms and Proposition
3.2 give (15) whereas the first part of (14) follows from Proposition 3.2, because
n+ 1 = h0(X,L) = h0(Fe, E).

4.1. The component of the Hilbert scheme containing [X]

In what follows, we are interested in studying the Hilbert scheme parametrizing
closed subschemes of Pn having the same Hilbert polynomial P (T ) := PX(T ) ∈
Q[T ] of X, i.e. the numerical polynomial defined by

P (m) = χ(X,mL) (16)

=
1

6
m3L3 − 1

4
m2L2 ·K +

1

12
mL · (K2 + c2) + χ(OX),

for all m ∈ Z,(cf. [24, Example 15.2.5]). For basic facts on Hilbert schemes we
refer to e.g. [34].

A scroll X ⊂ Pn, as above, corresponds to a point [X] ∈ Hd,n3 , where Hd,n3

denotes the Hilbert scheme parametrizing closed subschemes of Pn with Hilbert
polynomial P (T ) as above, where n and d are as in (14). Let

N := NX/Pn (17)
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denote the normal bundle of X in Pn. From standard facts on Hilbert schemes
(see, for example, [34, Corollary 3.2.7]), one has

T[X](Hd,n3 ) ∼= H0(N) (18)

and

h0(N)− h1(N) ≤ dim[X](Hd,n3 ) ≤ h0(N), (19)

where the left-most integer in (19) is the expected dimension of Hd,n3 at [X] and
where equality holds on the right in (19) if and only if X is unobstructed in Pn

(namely, iff [X] ∈ Hd,n3 is a smooth point).
In the next result we exhibit components of the Hilbert schemes of scrolls, as

in Proposition 4.1, which are generically smooth and of the expected dimension.

Theorem 4.2. Assume e ≤ 2 and b = 2e + 3 + t. Then, for any t ≥ 0, there
exists an irreducible component Xe ⊆ Hd,n3 , which is generically smooth and of
(the expected) dimension

dim(Xe) = n(n+ 1) + 9e+ 20 + 6t, (20)

where n = 9e+ 33 + 6t and d = 18e+ 55 + 12t, such that [X] sits in the smooth
locus of Xe.

Remark 4.3. (i) Notice that, for any fixed integer t ≥ 0, b = 2e + 3 + t is
the maximal value that b can achieve according to (6). Correspondingly,
one can compute n and d by simply substituting this value of b in (14),
which exactly gives n = 9e + 33 + 6t and d = 18e + 55 + 12t as in the
statement of Theorem 4.2.

(ii) Assumptions e ≤ 2 and b = 2e+ 3 + t in Theorem 4.2 are not inherently
imposed by the problem, but added here only to simplify technical details
in the proof of Theorem 4.2 (see details of proof below). One could as well
consider all cases −2 < b ≤ 2e+ 3 + t, but then an exhaustive analysis of
all possible numerical values for b, e and t, compatible with (3), (5), (6),
would be required, as well as thorough parameter computations for the
construction of threefolds X as in Proposition 4.1. This approach would
be beyond the scope of this note. Thus, to simplify the proof of Theorem
4.2, we will assume b = bl < 6 + t + e which, by (6), is indeed the case
as soon as e ≤ 2, as well as b ≥ 2e + 3 + t which, together with (6),
gives exactly b = 2e+ 3 + t. We would like to stress that, even under the
conveniently chosen numerical assumptions, Theorem 4.2 gives infinitely
many classes of examples of Hilbert schemes: for any e ∈ {0, 1, 2} and
for any integer t ≥ 0. Indeed one notices that (3) is always satisfied when
bm = 3e+ 6 + t and bl = b = 2e+ 3 + t, for any t ≥ 0.
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(iii) Under the numerical assumptions of Theorem 4.2, all bundles E will split
(cf. (32)).

Proof of Theorem 4.2. By (18) and (19), the statement will follow by showing
that Hi(X,N) = 0, for i ≥ 1, and computing h0(X,N) = χ(X,N). The
necessary arguments, and cohomological computations, run as in [19, Theorem
4.4], with appropriate obvious modifications, hence we omit most of the details.

From the Euler sequence on Pn restricted to X

0 −→ OX −→ OX(1)⊕(n+1) −→ TPn|X −→ 0

and the facts that Hi(X,OX) = Hi(Fe,OFe) = 0, for i ≥ 1, and X is non–
degenerate in Pn, with n as in (14), one has:

h0(X,TPn|X) = (n+ 1)2 − 1 and hi(X,TPne |X) = 0, for i ≥ 1. (21)

The normal sequence

0 −→ TX −→ TPn|X −→ N −→ 0 (22)

therefore gives

Hi(X,N) ∼= Hi+1(X,TX) for i ≥ 1. (23)

Claim 2. Hi(X,N) = 0, for i ≥ 1.

Proof of Claim 2. From (21) and (22), one has hj(X,N) = 0, for j ≥ 3. For
the other cohomology spaces, we use (23). In order to compute Hj(X,TX)
we use the scroll map ϕ : P(E) −→ Fe and we consider the relative cotangent
bundle sequence:

0→ ϕ∗(Ω1
Fe

)→ Ω1
X → Ω1

X|Fe
−→ 0. (24)

The adjunction theoretic characterization of the scroll and (11) give

KX = −2L+ ϕ∗(KFe
+ c1(E)) = −2L+ ϕ∗(KFe

+ 4C0 + (3e+ 6 + t+ b)f)

thus

Ω1
X|Fe

= KX + ϕ∗(−KFe
) = −2L+ ϕ∗(4C0 + (3e+ 6 + t+ b)f)

which, combined with the dual of (24), gives

0→ 2L− ϕ∗(4C0 + (3e+ 6 + t+ b)f)→ TX → ϕ∗(TFe
)→ 0. (25)
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As in [19, Theorem 4.4], if e 6= 0,

h0(X,ϕ∗(TFe
)) = h0(Fe, TFe

) = e+ 5,

h1(X,ϕ∗(TFe
)) = h1(Fe, TFe

) = e− 1, (26)

hj(X,ϕ∗(TFe
)) = hj(Fe, TFe

) = 0, for j ≥ 2,

whereas

h0(X,ϕ∗(TF0)) = h0(F0, TF0) = 6, (27)

hj(X,ϕ∗(TF0)) = hj(F0, TF0) = 0, for j ≥ 1.

The cohomology of 2L− ϕ∗(4C0 + (3e+ 6 + t+ b)f) in (25) is computed as in

[19, Theorem 4.4]. Since Riϕ∗(2L) = 0 for i ≥ 1 (see [28, Ex. 8.4, p. 253]),
projection formula and Leray’s isomorphism give

Hi(X, 2L− ϕ∗(4C0 + (3e+ 6 + t+ b)f)) ∼= (28)

Hi(Fe, Sym2E ⊗ (−4C0 − (3e+ 6 + t+ b)f)),

∀i ≥ 0.

As in the proof of [19, Theorem 4.4], the fact that E fits in (12) implies
there exists a finite filtration

Sym2(E) = F 0 ⊇ F 1 ⊇ F 2 ⊇ F 3 = 0

s.t.
F 0/F 1 ∼= 2B, F 1/F 2 ∼= A+B, F 2 ∼= 2A,

since F 3 = 0 (for technical details, we refer the reder to [19, Theorem 4.4]).
Thus, we get the following exact sequences

0→ F 1 → Sym2(E)→ 2B → 0 and 0→ 2A→ F 1 → A+B → 0, (29)

Tensoring the two exact sequences in (29) by −c1(E) = −4C0−(3e+6+t+b)f =
−A−B, we get respectively:

0→ F1 → Sym2(E)⊗ (−4C0 − (3e+ 6 + t+ b)f)→ B −A→ 0, (30)

0→ A−B → F1 → OFe
→ 0, (31)

where F1 = F 1(−4C0 − (3e+ 6 + t+ b)f). From (13) it follows that A−B =
2C0 + (3e+ 4 + t− b)f . Now R0π∗(2C0 + (3e+ 4 + t− b)f) ∼= (OP1 ⊕OP1(−e)⊕
OP1(−2e)) ⊗ OP1(3e + 4 + t − b) and Riπe∗(2C0 + (3e + 4 + t − b)f) = 0, for
i > 0. Hence, from Leray’s isomorphism and Serre duality, we have

hj(A−B) = hj(P1, (OP1 ⊕OP1(−e)⊕OP1(−2e))⊗OP1(3e+ 4 + t− b))
= hj(OP1(3e+ 4 + t− b)) + hj(OP1(2e+ 4 + t− b))

+hj(OP1(e+ 4 + t− b))
= 0, if j ≥ 2;



UNIFORM VECTOR BUNDLES ON HIRZEBRUCH SURFACES 13

h1(A−B) = h1(OP1(3e+ 4 + t− b)) + h1(OP1(2e+ 4 + t− b))
+h1(OP1(e+ 4 + t− b))

= h0(OP1(b− 6− t− 3e)) + h0(OP1(b− 6− t− 2e))

+h0(OP1(b− 6− t− e)).

This implies that, if b < 6 + t+ e, then h1(A−B) = 0.
Since by (6) we have b = b` < 2e+ 4 + t, notice that 2e+ 4 + t ≤ e+ 6 + t

is equivalent to our numerical assumption e ≤ 2. In particular, under the
assumptions (6) and e ≤ 2, the case b ≥ 6 + t+ e cannot occur. Hence, under
these assumptions, no indecomposable vector bundles can arise, i.e. any E is
such that

E = A⊕B. (32)

Moreover the condition h1(A−B) = 0, along with hi(OFe
) = 0, for i ≥ 1, and

the cohomology associated to (31) give hi(F 1(−4C0 − (3e + 6 + t + b)f) = 0
for i ≥ 1.

We now compute the cohomology of B −A. Using Serre duality,

Hj(B −A) = Hj(−2C0 − (3e+ 4 + t− b)f)
∼= H2−j(−2C0 − (e+ 2)f + 2C0 + (3e+ 4 + t− b)f))
∼= H2−j((2e+ 2 + t− b)f)
∼= H2−j(OP1(2e+ 2 + t− b)).

Notice that, when b ≥ 2e+ 3 + t one has h2(B −A) = 0.
Thus numerical assumption b = 2e + 3 + t in the statement is compatible

with (6) and ensures the vanishing of H2(B−A). It also implies H1(B−A) ∼=
H1(OP1(−1)) = 0.

From the cohomology sequence associated to (30) it follows that if b =
2e+ 3 + t then

hj(X, 2L− ϕ∗(4C0 + (3e+ 6 + t+ b)f)) =

hj(2L− ϕ∗(4C0 + (5e+ 9 + 2t)f)) = (33)

hj(Fe, Sym2E ⊗ (−4C0 − 5e− 9− 2t)f) = 0, for j ≥ 1.

Using (26), (27) and (33) in the cohomology sequence associated to (25),
we get

hj(X,TX) = 0, for j ≥ 2. (34)

Moreover

h1(X,TX) =

{
e− 1 for e 6= 0

0 for e = 0.
(35)

Isomorphism (23) concludes the proof of Claim 2.
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Claim 2, together with the fact that smoothness is an open condition, im-
plies that there exists an irreducible component Xe of Hd,n3 which is generically
smooth, of the expected dimension dim(Xe) = h0(X,N) = χ(N), such that
[X] lies in its smooth locus (recall (18), (19)).

The Hirzebruch-Riemann-Roch theorem gives

χ(N) =
1

6
(n31 − 3n1n2 + 3n3) +

1

4
c1(n21 − 2n2) (36)

+
1

12
(c21 + c2)n1 + (n− 3)χ(OX),

where ni := ci(N) and ci := ci(X).
Setting, for simplicity, K := KX , Chern classes of N can be obtained from

(22):

n1 = K + (n+ 1)L;

n2 =
1

2
n(n+ 1)L2 + (n+ 1)LK +K2 − c2; (37)

n3 =
1

6
(n− 1)n(n+ 1)L3 +

1

2
n(n+ 1)KL2 + (n+ 1)K2L

−(n+ 1)c2L− 2c2K +K3 − c3.

The numerical invariants of X can be easily computed by:

KL2 = −2d+ 6e+ 28 + 6t+ 6b; K2L = 4d− 20b− 20t− 20e− 96;

c2L = 2e+ 24 + 2b+ 2t; K3 = −8d+ 48b+ 48t+ 48e+ 240;

−Kc2 = 24; c3 = 8.

Plugging these in (37) and then in (36), one gets

χ(N) = (d− 3e− 3b− 3t− 12)n+ 122 + 21t+ 21e+ 21b− 3d.

From (14), one has d = 8e+5b+7t+40 and n = 5e+2b+4t+27; in particular

d− 3e− 3b− 3t− 12 = n+ 1.

Thus

χ(N) = (n+ 1)n+ 2− 3e+ 6b = (n+ 1)n+ 9e+ 20 + 6t,

as in (19), with n = 9e+ 33 + 6t since b = 2e+ 3 + t.

Remark 4.4. The proof of Theorem 4.2 gives

h0(N) = (n+ 1)n+ 9e+ 20 + 6t, hi(N) = 0, i ≥ 1. (38)
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Using (21) and (38) in the exact sequence (22) and the values of b, n and d as
in Theorem 4.2, one gets

χ(TX) = n− 6b+ 3e− 2 = 8e− 4b+ 4t+ 25 = 13. (39)

Moreover, from (22) and (21), one has:

0→ H0(TX)→ H0(TPn|X )
α→ H0(N)

β→ H1(TX)→ 0. (40)

Corollary 4.5. With the same assumptions as in Theorem 4.2 one has:

i) if e 6= 0,

h0(TX) = e+ 12, h1(TX) = e− 1, hj(TX) = 0, for j ≥ 2;

ii) if e = 0,

h0(TX) = 13, hj(TX) = 0, for j ≥ 1.

Proof. Let e 6= 0, then hj(TX) = 0, for j ≥ 2, is (34) and h1(TX) = e− 1, from
(35). We now use (39) to get that h0(TX) = 9e − 4b + 4t + 20 = e + 12. A
similar argument gives the desired values for h0 and hj in the case e = 0.

The next result shows that, for e = 2, scrolls arising from Proposition 4.1
do not fill up the component X2 ⊆ Hd,n3 .

Theorem 4.6. Assumptions as in Theorem 4.2. Let Ye be the locus in Xe
filled-up by 3-fold scrolls X as in Proposition 4.1. Then

codimXe
(Ye) =

{
e− 1 for e 6= 0

0 for e = 0

Proof. If τ denotes the number of parameters counting isomorphism classes of
projective bundles P(E) as in Proposition 4.1, then τ = 0 since E = A⊕B (see
(32)). Therefore X ∼= P(A⊕B) is uniquely determined by A and B. Thus, by
construction, dim(Ye) = dim(Im(α)). From (40), dim(Coker(α)) = h1(TX) so

codimXe
(Ye) = dim(Coker(α)) =

{
e− 1 for e 6= 0

0 for e = 0
,
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5. Open Questions

We have seen in Theorem 4.6 that the locus Ye in Xe of 3-fold scrolls X as in
Proposition 4.1, does not necessarily fill up Xe if e = 2. The following problems
arise naturally:

1) Describe a variety Z which is a candidate to represent the general point
of the component X2;

2) Assuming that a description of a variety Z as in 1) above is achieved,
interpret the projective degeneration of Z to X, where [X] ∈ Y2, in
terms of vector bundles on Hirzebruch surfaces;

3) Extend the results in this note to the case e ≥ 3.
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Università degli Studi di Roma Tor Vergata
Viale della Ricerca Scientifica, 1 - 00133 Roma
Italy
E-mail: flamini@mat.uniroma2.it

Received November 24, 2014


