In this paper, we propose the distributed tree kernels (DTK) as a novel method to reduce time and space complexity of tree kernels. Using a linear complexity algorithm to compute vectors for trees, we embed feature spaces of tree fragments in low-dimensional spaces where the kernel computation is directly done with dot product. We show that DTKs are faster, correlate with tree kernels, and obtain a statistically similar performance in two natural language processing tasks.

Zanzotto, F.m., Dell'Arciprete, L. (2012). Distributed Tree Kernels. In Proceedings of International Conference on Machine Learning (ICML) - http://www.scimagojr.com/journalsearch.php?q=21100217201&tip=sid&clean=0 (GGS Conference Rating 1 A++) (pp.--).

Distributed Tree Kernels

ZANZOTTO, FABIO MASSIMO;
2012-01-01

Abstract

In this paper, we propose the distributed tree kernels (DTK) as a novel method to reduce time and space complexity of tree kernels. Using a linear complexity algorithm to compute vectors for trees, we embed feature spaces of tree fragments in low-dimensional spaces where the kernel computation is directly done with dot product. We show that DTKs are faster, correlate with tree kernels, and obtain a statistically similar performance in two natural language processing tasks.
International Conference on Machine Learning
Edimburgh
2012
29
Rilevanza internazionale
contributo
2012
Settore INF/01 - INFORMATICA
Settore ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI
English
Feature space; Linear complexity algorithm; Low-dimensional spaces; NAtural language processing; Space complexity; Tree kernels
http://icml.cc/2012/papers/111.pdf
Intervento a convegno
Zanzotto, F.m., Dell'Arciprete, L. (2012). Distributed Tree Kernels. In Proceedings of International Conference on Machine Learning (ICML) - http://www.scimagojr.com/journalsearch.php?q=21100217201&tip=sid&clean=0 (GGS Conference Rating 1 A++) (pp.--).
Zanzotto, Fm; Dell'Arciprete, L
File in questo prodotto:
File Dimensione Formato  
111.pdf

accesso aperto

Dimensione 379.63 kB
Formato Adobe PDF
379.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/105914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? ND
social impact