Given α ∈ [0, 2) and f ∈ L2((0, T) × (0, 1)), we derive new Carleman estimates for the degenerate parabolic problem wt + (xαwx)x = f, where (t, x) ∈ (0, T) × (0, 1), associated to the boundary conditions w(t, 1) = 0 and w(t, 0) = 0 if 0 ≤ α < 1 or (xαwx)(t, 0) = 0 if 1 ≤ α < 2. The proof is based on the choice of suitable weighted functions and Hardy-type inequalities. As a consequence, for all 0 ≤ α < 2 and ω ⊂⊂ (0, 1), we deduce null controllability results for the degenerate one-dimensional heat equation ut − (xαux)x = hχω with the same boundary conditions as above.

Cannarsa, P., Martinez, P., Vancostenoble, J. (2008). Carleman estimates for a class of degenerate parabolic operators. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 47, 1-19.

Carleman estimates for a class of degenerate parabolic operators

CANNARSA, PIERMARCO;
2008-01-01

Abstract

Given α ∈ [0, 2) and f ∈ L2((0, T) × (0, 1)), we derive new Carleman estimates for the degenerate parabolic problem wt + (xαwx)x = f, where (t, x) ∈ (0, T) × (0, 1), associated to the boundary conditions w(t, 1) = 0 and w(t, 0) = 0 if 0 ≤ α < 1 or (xαwx)(t, 0) = 0 if 1 ≤ α < 2. The proof is based on the choice of suitable weighted functions and Hardy-type inequalities. As a consequence, for all 0 ≤ α < 2 and ω ⊂⊂ (0, 1), we deduce null controllability results for the degenerate one-dimensional heat equation ut − (xαux)x = hχω with the same boundary conditions as above.
2008
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
degenerate parabolic equation; null controllability; Carleman estimates; Hardy-type inequality
Cannarsa, P., Martinez, P., Vancostenoble, J. (2008). Carleman estimates for a class of degenerate parabolic operators. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 47, 1-19.
Cannarsa, P; Martinez, P; Vancostenoble, J
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Mrt-Vnc_SICON.pdf

accesso aperto

Dimensione 225.04 kB
Formato Adobe PDF
225.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 178
  • ???jsp.display-item.citation.isi??? 173
social impact