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Abstract. Given α ∈ [0, 2) and f ∈ L2((0, T ) × (0, 1)), we derive new Carleman estimates for
the degenerate parabolic problem wt + (xαwx)x = f , where (t, x) ∈ (0, T )× (0, 1), associated to the
boundary conditions w(t, 1) = 0 and w(t, 0) = 0 if 0 ≤ α < 1 or (xαwx)(t, 0) = 0 if 1 ≤ α < 2.
The proof is based on the choice of suitable weighted functions and Hardy-type inequalities. As
a consequence, for all 0 ≤ α < 2 and ω ⊂⊂ (0, 1), we deduce null controllability results for the
degenerate one-dimensional heat equation ut − (xαux)x = hχω with the same boundary conditions
as above.
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1. Introduction. The study of controllability for nondegenerate parabolic equa-
tions has attracted the interest of several authors in the past few decades. After the
pioneering works [14, 19, 20, 37, 38], there has been substantial progress in understand-
ing the controllability properties of nondegenerate parabolic equations with variable
coefficients. In [30], local Carleman estimates for elliptic equations were used to study
the null controllability of the heat equation on a manifold. Finally, a powerful new
approach, based on global estimates of Carleman type, was developed in [26].

The theory has also been extended to semilinear problems (see, for example,
[2, 3, 12, 15, 21, 24, 25]) and to equations in unbounded domains (see, for example,
[13, 33, 34]; see also [31, 41]). For the Stokes and Navier–Stokes equations we also
refer the reader to [4, 10, 11, 18, 22, 23, 26, 27, 28].

On the contrary, few results are known for degenerate equations, even though
many problems that are relevant for applications are described by parabolic equations
degenerating at the boundary of the space domain. For instance, in [5, 32, 8, 9] the
reader will find a motivating example of a Crocco-type equation coming from the
study of the velocity field of a laminar flow on a flat plate.

The goal of this paper is to study the controllability of a simple model of degen-
erate parabolic equation, namely,

ut − (xαux)x = hχω, x ∈ (0, 1), t ∈ (0, T ),

where the control h acts on a nonempty subinterval ω of (0, 1).
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2 P. CANNARSA, P. MARTINEZ, AND J. VANCOSTENOBLE

2. Results.

2.1. Statement of the controllability problem. Given 0 ≤ α < 2, define

∀x ∈ [0, 1], a(x) := xα,

and let ω be a nonempty subinterval of (0, 1). For T > 0, set

QT = (0, T ) × (0, 1) ,

and consider the initial-boundary value problem

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − (aux)x = hχω, (t, x) ∈ QT ,

u(t, 1) = 0, t ∈ (0, T ),

and

{
u(t, 0) = 0 for 0 ≤ α < 1,

(aux)(t, 0) = 0 for 1 ≤ α < 2,
t ∈ (0, T ),

u(0, x) = u0(x), x ∈ (0, 1),

where u0 is given in L2(0, 1) and h ∈ L2(QT ).

2.2. Well-posedness. Let us recall that the above problem is well-posed in
appropriate weighted spaces. For 0 ≤ α < 1, define the Hilbert space H1

a(0, 1) as

H1
a(0, 1) := {u ∈ L2(0, 1) | u absolutely continuous in [0, 1],

√
aux ∈ L2(0, 1) and u(0) = u(1) = 0},

and the unbounded operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) by{
∀u ∈ D(A), Au := (aux)x,

D(A) := {u ∈ H1
a(0, 1) | aux ∈ H1(0, 1)}.

Notice that if u ∈ D(A) (or even u ∈ H1
a(0, 1)), then u satisfies the Dirichlet boundary

conditions u(0) = u(1) = 0.
For 1 ≤ α < 2, let us change the definition of H1

a(0, 1) to

H1
a(0, 1) := {u ∈ L2(0, 1) | u locally absolutely continuous in (0, 1],

√
aux ∈ L2(0, 1) and u(1) = 0} .

Then the operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) will be defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∀u ∈ D(A), Au := (aux)x,

D(A) := {u ∈ H1
a(0, 1) | aux ∈ H1(0, 1)}

= {u ∈ L2(0, 1) | u locally absolutely continuous in (0, 1],

au ∈ H1
0 (0, 1), aux ∈ H1(0, 1), and (aux)(0) = 0}.

Notice that if u ∈ D(A), then u satisfies the Neumann boundary condition (aux)(0) =
0 at x = 0 and the Dirichlet boundary condition u(1) = 0 at x = 1.

In both cases, the following results hold (see, e.g., [7] and [9]).
Proposition 2.1. A : D(A) ⊂ L2(0, 1) → L2(0, 1) is a closed self-adjoint

negative operator with dense domain.
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Hence, A is the infinitesimal generator of a strongly continuous semigroup etA on
L2(0, 1). Consequently, we have the following well-posedness result.

Theorem 2.1. Let h be given in L2(QT ). For all u0 ∈ L2(0, 1), problem (2.1)
has a unique solution

(2.2) u ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)).

Moreover, if u0 ∈ D(A), then

(2.3) u ∈ C0([0, T ];H1
a(0, 1)) ∩ L2(0, T ;D(A)) ∩H1(0, T ;L2(0, 1)).

Remark 2.1. Most of the results of this paper hold and will be stated for solutions
in the above class (2.2). However, in the proofs, we will assume—often without further
notice—that solutions belong to the stronger class (2.3). This can be done without
loss of generality, since the general result can always be recovered by a standard
density argument.

2.3. Carleman estimates for degenerate problems. In order to study the
controllability properties of (2.1), we need to derive a Carleman estimate for the
adjoint problem. Keeping the notation

a(x) := xα, with 0 ≤ α < 2 , and QT = (0, T ) × (0, 1) for T > 0,

let us consider the parabolic problem

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wt + (awx)x = f, (t, x) ∈ QT ,

w(t, 1) = 0, t ∈ (0, T ),

and

{
w(t, 0) = 0 for 0 ≤ α < 1,

(awx)(t, 0) = 0 for 1 ≤ α < 2,
t ∈ (0, T ),

w(T, x) = wT (x), x ∈ (0, 1),

where wT ∈ L2(0, 1) and f ∈ L2(QT ). Our main result is the following.
Theorem 2.2. Let 0 ≤ α < 2 and T > 0 be given. Then there exists σ :

(0, T ) × [0, 1] → R
∗
+ of the form σ(t, x) = θ(t)p(x), with

p(x) > 0 ∀x ∈ [0, 1] and θ(t) → ∞ as t → 0+, T−,

and two positive constants, C and R0, such that, for all wT ∈ L2(0, 1) and f ∈
L2(QT ), the solution w of (2.4) satisfies, for all R ≥ R0,∫∫

QT

(
Rθxαw2

x + R3θ3x2−αw2
)
e−2Rσ dxdt

≤ C

∫∫
QT

e−2Rσf2 dxdt + C

∫ T

0

{
Rθe−2Rσw2

x

}
|x=1

.

Remark 2.2. The functions p and θ will be explicitly constructed in the proof.
As we shall see, the choice of θ will be

∀t ∈ (0, T ), θ(t) =

(
1

t(T − t)

)4

.

This weight function satisfies the following essential properties:

θ(t) → +∞ as t → 0+ or T− and |θt| ≤ cθ5/4, |θtt| ≤ cθ3/2
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for some constant c > 0 depending on T . Moreover, we will take

p(x) :=
2 − x2−α

(2 − α)2
∀x ∈ [0, 1].

2.4. Observability inequalities. As it is well known, very useful tools for
studying controllability are provided by observability inequalities for the adjoint prob-
lem

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vt + (avx)x = 0, (t, x) ∈ QT ,

v(t, 1) = 0, t ∈ (0, T ),

and

{
v(t, 0) = 0 for 0 ≤ α < 1,

(avx)(t, 0) = 0 for 1 ≤ α < 2,
t ∈ (0, T ),

v(T, x) = vT (x), x ∈ (0, 1),

where vT is given in L2(0, 1). From the Carleman estimate of Theorem 2.2, we obtain
the following observability inequalities for (2.5).

Theorem 2.3. Let 0 ≤ α < 2 and T > 0 be given, and let ω be a nonempty
subinterval of (0, 1). Then there exists C > 0 such that, for all vT ∈ L2(0, 1), the
solution v of (2.5) satisfies

(2.6)

∫ 1

0

xαvx(0, x)2 dx ≤ C

∫ T

0

∫
ω

v(t, x)2 dxdt.

2.5. Application to controllability. For any 0 ≤ α < 2, the following observ-
ability inequality follows from Theorem 2.3 and Hardy’s inequalities (see the proof in
section 5):

(2.7)

∫ 1

0

v(0, x)2 dx ≤ C

∫ T

0

∫
ω

v(t, x)2 dxdt.

The above inequality is well known in the nondegenerate case (α = 0) since it
follows, for instance, from classical Carleman estimates for nondegenerate parabolic
equations.

For α ∈ [0, 1/2)∪[5/4, 2), inequality (2.7) was proved in [9] by means of a different
Carleman estimate that had been obtained using a different weight function p but gave
no information for α ∈ [1/2, 5/4).

Therefore, inequality (2.7) above fills the gap between 1/2 and 5/4 which was
left open in [9]. Thus, we obtain, by standard arguments (see, e.g., [14, 26]), a null
controllability result for degenerate heat equations with initial data in L2(0, 1).

Theorem 2.4. Let 0 ≤ α < 2 and T > 0 be given, and let ω be a nonempty
subinterval of (0, 1). Then, for all u0 ∈ L2(0, 1), there exists h ∈ L2((0, T ) × ω) such
that the solution of the degenerate problem (2.1) satisfies u(T ) ≡ 0 in (0, 1).

Remark 2.3. Let us recall that the above result is optimal since, for α ≥ 2,
problem (2.1) fails to be null controllable (see [8]). Indeed, a standard change of
variable transforms problem (2.1) into the heat equation in the unbounded domain
]0,+∞[, whereas control supports are still bounded. Then a result by Escauriaza,
Seregin, and Šverák [16, 17], which generalizes a result by Micu and Zuazua [33],
ensures that null controllability fails for such an equation.

Remark 2.4. In [9], inequality (2.7) was applied to a Crocco-type equation to
obtain a null controllability result for α ∈ [0, 1/2) ∪ [5/4, 2). Thus, the results of
the present paper also show the null controllability of this equation for all values of
α ∈ [0, 2).
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2.6. Hardy-type inequalities. A major ingredient for the proofs of Theorems
2.2 and 2.3 is the following well-known lemma (see, for example, [35]; for the reader’s
convenience, we recall the proof in section 6).

Lemma 2.1 (Hardy-type inequalities).
(i) Let 0 ≤ α� < 1. Then, for all locally absolutely continuous functions z on

(0, 1) satisfying

z(x) → 0
x→0+

and

∫ 1

0

xα�

z2
x < ∞,

the following inequality holds:

(2.8)

∫ 1

0

xα�−2z2 ≤ 4

(1 − α�)2

∫ 1

0

xα�

z2
x.

(ii) Let 1 < α� < 2. Then the above inequality (2.8) still holds for all locally
absolutely continuous functions z on (0, 1) satisfying

z(x) → 0
x→1−

and

∫ 1

0

xα�

z2
x < +∞.

Remark 2.5. Notice that (2.8) is false for α� = 1.

2.7. Further remarks. In the present paper, we study the case of a degener-
ate operator of the form −(xαux)x with the boundary condition u(x = 0) = 0 when
0 ≤ α < 1 or (xαux)(x = 0) = 0 when 1 ≤ α < 2. The choice of such an operator in
divergence form probably simplifies parts of the computations arising in the proof of
Carleman estimates. Of course, it would be interesting to study, in a next step, other
operators like −xαuxx. On the other hand, the choice of the boundary condition at
x = 0 ensures a relatively simple framework for the statement of well-posedness. Here
again, it would be interesting to study the cases of other boundary conditions. For
example, an interesting problem would be the case of Wentzell boundary conditions;
see, e.g., [6, 39]. The techniques developed here may be useful to treat such problems.
However, both the form of the operator and the boundary conditions play an impor-
tant role in the computations of the proof of Carleman estimates. For this reason,
these other problems have yet to be studied.

On the other hand, let us mention that the ideas of the present paper allow us
to prove similar null controllability results for degenerate semilinear problems using
a classical fixed point method (see [1]).

Next, instead of a distributed control on ω ⊂ (0, 1), one could consider a boundary
control acting at one extreme point of the domain (0, 1). Theorem 2.2 readily implies
a boundary null controllability result if the control acts at x = 1. The case of a
boundary control at x = 0 has not yet been studied.

Finally, another interesting question would be the study of degenerate operators
in higher dimensions. Of course, this opens a lot of perspectives since the study will
depend on the domain where the operator degenerates and the way it degenerates.
This question will be the subject of a forthcoming paper.

3. Proof of Theorem 2.2 (Carleman estimates).

3.1. Notation and reformulation of the problem. We recall that a(x) = xα

for all x ∈ [0, 1] with α ∈ [0, 2) given. Let σ(t, x) = θ(t)p(x), where
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p(x) > 0 ∀x ∈ [0, 1] and θ(t) → ∞ as t → 0+, T−.

For R > 0, define

(3.1) z(t, x) = e−Rσ(t,x)w(t, x),

where w is a solution of (2.4). Notice that,

(3.2) ∀n ∈ N, θnz = 0 and zx = 0 at time t = 0 and t = T.

Moreover z satisfies

(3.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(eRσz)t + (a(eRσz)x)x = f, (t, x) ∈ QT ,

z(t, 1) = 0, t ∈ (0, T ),

and

{
z(t, 0) = 0 for 0 ≤ α < 1,

(azx)(t, 0) = −R(aσxz)(t, 0) for 1 ≤ α < 2,
t ∈ (0, T ).

This equation may be recast as follows:

PRz = P+
R z + P−

R z = fe−Rσ,

where

P+
R z := Rσtz + R2aσ2

xz + (azx)x,

P−
R z := zt + R(aσxz)x + Raσxzx

= zt + R(aσx)xz + 2Raσxzx.

Moreover, we have

(3.4) ‖fe−Rσ‖2 ≥ ‖P+
R z‖2 + ‖P−

R z‖2 + 2〈P+
R z, P−

R z〉 ≥ 2〈P+
R z, P−

R z〉,

where ‖ · ‖ and 〈·, ·〉 denote the usual norm and scalar product in L2(QT ).

3.2. Computation of the scalar product. We now want to compute the
scalar product in L2(QT ) of P+

R z and P−
R z. This will be done in two steps.

Lemma 3.1. The following identity holds:

〈P+
R z, P−

R z〉 =

∫ T

0

[
azxzt + R2aσtσxz

2 + R3a2σ3
xz

2

+ Ra(aσx)xzzx + Ra2σxz
2
x

]1

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b.t.)

+

∫∫
QT

(
−1

2
Rσtt − 2R2aσxσxt −R3aσx(aσ2

x)x

)
z2

+

∫∫
QT

−R
a

σx
(aσ2

x)xz
2
x −Ra(aσx)xxzzx.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(d.t.)

Then, using the fact that a(x) = xα and σ(t, x) = θ(t)p(x), we compute the dis-
tributed and boundary terms as follows.
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Lemma 3.2. For all 0 ≤ α < 2, we have

(d.t.) = −1

2
R

∫∫
QT

θttpz
2 − 2R2

∫∫
QT

θθtx
αp2

xz
2

− R3

∫∫
QT

θ3x2α−1(2xpxx + αpx)p2
xz

2

− R

∫∫
QT

θx2α−1(2xpxx + αpx)z2
x −R

∫∫
QT

θxα(xαpx)xxzzx.

Moreover, for 0 ≤ α < 1, the boundary terms (b.t.) are given by

(b.t.) for 0 ≤ α < 1 =

∫ T

0

{
Rθa2pxz

2
x

}
|x=1

−
∫ T

0

{
Rθa2pxz

2
x

}
|x=0

.

For 1 ≤ α < 2, the boundary terms (b.t.) become

(b.t.) for 1 ≤ α < 2 =

∫ T

0

{
Rθa2pxz

2
x

}
|x=1

+

∫ T

0

{
− R

2
θtapxz

2 −R2θtθappxz
2 − 2R3θ3a2p3

xz
2 + R2θ2apx(apx)xz

2
}
|x=0

.

Proof of Lemma 3.1. We have

〈P+
R z, P−

R z〉 = Q1 + Q2 + Q3 + Q4,

where

Q1 := 〈Rσtz + R2aσ2
xz + (azx)x, zt〉,

Q2 := R2〈σtz, (aσx)xz + 2aσxzx〉,
Q3 := R3〈aσ2

xz, (aσx)xz + 2aσxzx〉,
Q4 := R〈(azx)x, (aσx)xz + 2aσxzx〉.

First term: Q1.

Q1 =

∫∫
QT

(
Rσtz + R2aσ2

xz + (azx)x

)
zt

=

∫∫
QT

(Rσt + R2aσ2
x)
(z2

2

)
t
+

∫∫
QT

(azx)xzt

=
[∫ 1

0

1

2

(
Rσt + R2aσ2

x

)
z2
]T
0
−
∫∫

QT

1

2

(
Rσt + R2aσ2

x

)
t
z2

+

∫ T

0

[
azxzt

]1

0
−
∫∫

QT

azxzxt

=
[∫ 1

0

(
Rσt + R2aσ2

x

)1

2
z2 − 1

2
az2

x

]T
0

−
∫∫

QT

1

2

(
Rσt + R2aσ2

x

)
t
z2 +

∫ T

0

[
azxzt

]1

0
.
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By (3.2), the terms integrated in time are equal to zero. Hence,

(3.5) Q1 =

∫ T

0

[
azxzt

]1

0
+

∫∫
QT

(
− 1

2
Rσtt −R2aσxσxt

)
z2.

Second term: Q2.

Q2 = R2

∫∫
QT

σtz
(
(aσx)xz + 2aσxzx

)
= R2

∫∫
QT

σt(aσx)xz
2 + aσtσx(z2)x

= R2

∫∫
QT

σt(aσx)xz
2 + R2

∫ T

0

[
aσtσxz

2
]1

0
−R2

∫∫
QT

(aσtσx)xz
2.

Therefore,

(3.6) Q2 = R2

∫ T

0

[
aσtσxz

2
]1

0
−R2

∫∫
QT

aσxσxtz
2.

Third term: Q3.

Q3 = R3

∫∫
QT

aσ2
xz

(
(aσx)xz + 2aσxzx

)
= R3

∫∫
QT

aσ2
xz

(
(aσxz)x + aσxzx

)

= R3

∫ T

0

[
a2σ3

xz
2
]1

0
−R3

∫∫
QT

(aσ2
xz)xaσxz + R3

∫∫
QT

a2σ3
xzzx.

Thus,

(3.7) Q3 = R3

∫ T

0

[
a2σ3

xz
2
]1

0
−R3

∫∫
QT

aσx(aσ2
x)xz

2.

Last term: Q4.

Q4 = R

∫∫
QT

(azx)x

(
(aσx)xz + 2aσxzx

)

= R

∫ T

0

[
azx(aσx)xz

]1

0
−R

∫∫
QT

azx

(
(aσx)xz

)
x

+ R

∫∫
QT

σx

(
(azx)2

)
x

= R

∫ T

0

[
a(aσx)xzzx

]1

0
−R

∫∫
QT

a(aσx)xz
2
x + a(aσx)xxzzx

+ R

∫ T

0

[
σxa

2z2
x

]1

0
−R

∫∫
QT

σxxa
2z2

x.

Consequently,

(3.8) Q4 = R

∫ T

0

[
a(aσx)xzzx + a2σxz

2
x

]1

0

−R

∫∫
QT

a

σx
(aσ2

x)xz
2
x −R

∫∫
QT

a(aσx)xxzzx.

Finally, Lemma 3.1 follows from (3.5)–(3.8).
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Proof of Lemma 3.2. With a(x) = xα and σ(t, x) = θ(t)p(x), the distributed
terms (d.t.) can be computed as follows:

(d.t.) = −1

2
R

∫∫
QT

θttpz
2 − 2R2

∫∫
QT

θθtx
αp2

xz
2 −R3

∫∫
QT

θ3xαpx(xαp2
x)xz

2

− R

∫∫
QT

θ
xα

px
(xαp2

x)xz
2
x −R

∫∫
QT

θxα(xαpx)xxzzx

= −1

2
R

∫∫
QT

θttpz
2 − 2R2

∫∫
QT

θθtx
αp2

xz
2

− R3

∫∫
QT

θ3x2α−1(2xpxx + αpx)p2
xz

2

− R

∫∫
QT

θx2α−1(2xpxx + αpx)z2
x −R

∫∫
QT

θxα(xαpx)xxzzx.

On the other hand, also taking into account the fact that z(t, 1) = 0, the boundary
terms (b.t.) become

(b.t.) =

∫ T

0

{
Rθa2pxz

2
x

}
|x=1

−
∫ T

0

{
azxzt + R2θtθappxz

2 + R3θ3a2p3
xz

2

+ Rθa(apx)xzzx + Rθa2pxz
2
x

}
|x=0

.

Now, for 0 ≤ α < 1, use the fact that z(t, 0) = 0 to obtain

(b.t.) for 0 ≤ α < 1 =

∫ T

0

{
Rθa2pxz

2
x

}
|x=1

−
∫ T

0

{
Rθa2pxz

2
x

}
|x=0

.

Similarly, for 1 ≤ α < 2, recall that (azx)(t, 0) = −Rθ(t)(apxz)(t, 0) to conclude that

(b.t.) for 1 ≤ α < 2 =

∫ T

0

{
Rθa2pxz

2
x

}
|x=1

+

∫ T

0

{
Rθapx

(
z2

2

)
t

−R2θtθappxz
2 −R3θ3a2p3

xz
2 + R2θ2apx(apx)xz

2 −R3θ3a2p3
xz

2
}
|x=0

.

Hence

(b.t.) for 1 ≤ α < 2 =

∫ T

0

{
Rθa2pxz

2
x

}
|x=1

+

∫ T

0

{
− R

2
θtapxz

2

−R2θtθappxz
2 − 2R3θ3a2p3

xz
2 + R2θ2apx(apx)xz

2
}
|x=0

.

3.3. Bounds from below. Let us first define

∀t ∈ (0, T ), θ(t) :=

(
1

t(T − t)

)4

.

Observe that θ satisfies the following properties:

|θt| ≤ cθ5/4 ≤ cθ2 and |θtt| ≤ cθ3/2 ≤ cθ3.
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Next, let us recall that α ∈ [0, 2) and let us choose

∀x ∈ [0, 1], p(x) :=
2 − x2−α

(2 − α)2
.

Then

px(x) =
−x1−α

2 − α
, pxx(x) =

−(1 − α)

2 − α
x−α .

Hence

2xpxx + αpx = −x1−α

and

(xαpx)x =
−1

2 − α
; thus (xαpx)xx = 0 .

With this choice of θ and p, the distributed and boundary terms can be first computed
and then estimated as follows.

Lemma 3.3. For all α ∈ [0, 2), the distributed terms (d.t.) become

(d.t.) = − R

(2 − α)2

∫∫
QT

θttz
2 +

R

2(2 − α)2

∫∫
QT

θttx
2−αz2

− 2R2

(2 − α)2

∫∫
QT

θθtx
2−αz2 +

R3

(2 − α)2

∫∫
QT

θ3x2−αz2 + R

∫∫
QT

θxαz2
x.

For 0 ≤ α < 1, the boundary terms (b.t.) become

(b.t.) for 0 ≤ α < 1 = − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

+
1

2 − α

∫ T

0

{
Rθx1+αz2

x

}
|x=0

.

For 1 ≤ α < 2, the boundary terms (b.t.) become

(b.t.) for 1 ≤ α < 2 = − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

+

∫ T

0

{ Rθt
2(2 − α)

xz2

+
2R2θtθ

(2 − α)3
xz2 − R2θtθ

(2 − α)3
x3−αz2 +

2R3θ3

(2 − α)3
x3−αz2 +

R2θ2

(2 − α)2
xz2

}
|x=0

.

Lemma 3.4. For all α ∈ [0, 2), the distributed terms (d.t.) and the boundary
terms (b.t.) satisfy, for R large enough (depending on α and T ),

(d.t.) ≥ 1

4

R3

(2 − α)2

∫∫
QT

θ3x2−αz2 +
3

4
R

∫∫
QT

θxαz2
x,

(b.t.) ≥ − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

.

Proof of Lemma 3.3. The conclusion follows from the above choice of p and the
expressions of (d.t.) and (b.t.) given in Lemma 3.2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CARLEMAN ESTIMATES FOR DEGENERATE PARABOLIC OPERATORS 11

Proof of Lemma 3.4. Let us first analyze the distributed terms. Recall that, owing
to Lemma 3.3,

(d.t.) = − R

(2 − α)2

∫∫
QT

θttz
2 +

R

2(2 − α)2

∫∫
QT

θttx
2−αz2

− 2R2

(2 − α)2

∫∫
QT

θθtx
2−αz2 +

R3

(2 − α)2

∫∫
QT

θ3x2−αz2 + R

∫∫
QT

θxαz2
x.

Since the two last terms are nonnegative, we only need to estimate the three other
terms. We begin with the second term: since |θtt| ≤ cθ3/2 ≤ cθ3, we have

∣∣∣∣ R

2(2 − α)2

∫∫
QT

θttx
2−αz2

∣∣∣∣ ≤ cR

2(2 − α)2

∫∫
QT

θ3x2−αz2

≤ 1

4

R3

(2 − α)2

∫∫
QT

θ3x2−αz2

for R large enough. Next, using |θθt| ≤ cθ9/4 ≤ cθ3, we also obtain a bound of the
third term for R large enough:

∣∣∣∣ 2R2

(2 − α)2

∫∫
QT

θθtx
2−αz2

∣∣∣∣ ≤ 2cR2

(2 − α)2

∫∫
QT

θ3x2−αz2

≤ 1

4

R3

(2 − α)2

∫∫
QT

θ3x2−αz2.

Therefore,

(3.9) (d.t.) ≥ − R

(2 − α)2

∫∫
QT

θttz
2 +

1

2

R3

(2 − α)2

∫∫
QT

θ3x2−αz2 +R

∫∫
QT

θxαz2
x.

It remains to bound the first term on the right-hand side above. First let us observe
that the solution w of (2.4) belongs to L2(0, T ;H1

a(0, 1)) by Theorem 2.1. Since
z = e−Rσw, some direct computations imply that z also belongs to L2(0, T ;H1

a(0, 1)).
Next we write∣∣∣∣ R

(2 − α)2

∫∫
QT

θttz
2

∣∣∣∣ ≤ cR

(2 − α)2

∫∫
QT

θ3/2z2(3.10)

=
cR

(2 − α)2

∫∫
QT

(
θx(α−2)/3z2

)3/4(
θ3x2−αz2

)1/4

≤ 3εcR

4(2 − α)2

∫∫
QT

θx(α−2)/3z2 +
cR

4ε3(2 − α)2

∫∫
QT

θ3x2−αz2.

As this point, we separate the case α = 1 from the other ones. This case is peculiar
since Hardy’s inequality (Lemma 2.1) does not hold for α� = 1.

In the case α �= 1, we observe that x(α−2)/3 ≤ xα−2 (since α < 2), and we apply
Lemma 2.1 with α� = α �= 1 (z satisfies the assumptions of Lemma 2.1 for almost
every t since it belongs to L2(0, T ;H1

a(0, 1))) to obtain

(3.11)

∫∫
QT

θx(α−2)/3z2 ≤
∫∫

QT

θxα−2z2 ≤ 4

(α− 1)2

∫∫
QT

θxαz2
x.
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In the case α = 1, we apply Lemma 2.1 with α� = 5/3 and then use the fact that
x5/3 ≤ x to arrive at a similar conclusion:

(3.12)

∫∫
QT

θx(α−2)/3z2 =

∫∫
QT

θx−1/3z2 ≤ 4

(α� − 1)2

∫∫
QT

θx5/3z2
x

≤ 9

∫∫
QT

θxz2
x = 9

∫∫
QT

θxαz2
x.

In both cases, combining (3.10) with (3.11) or (3.12), we deduce∣∣∣∣ R

(2 − α)2

∫∫
QT

θttz
2

∣∣∣∣ ≤ εc′R

∫∫
QT

θxαz2
x +

cR

4ε3(2 − α)2

∫∫
QT

θ3x2−αz2

for some constant c′ > 0. Then, for ε small enough and R large enough, we have

(3.13)

∣∣∣∣ R

(2 − α)2

∫∫
QT

θttz
2

∣∣∣∣ ≤ 1

4
R

∫∫
QT

θxαz2
x +

1

4

R3

(2 − α)2

∫∫
QT

θ3x2−αz2.

Summing up, we obtain by (3.9) and (3.13)

(d.t.) ≥ 1

4

R3

(2 − α)2

∫∫
QT

θ3x2−αz2 +
3

4
R

∫∫
QT

θxαz2
x ≥ 0.

We now turn to the boundary terms. In the case 0 ≤ α < 1, there is nothing else
to do since, by Lemma 3.3,

(b.t.) for 0 ≤ α < 1 = − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

+
1

2 − α

∫ T

0

{
Rθx1+αz2

x

}
|x=0

≥ − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

.

In the case 1 ≤ α < 2, we recall that, by Lemma 3.3,

(b.t.) for 1 ≤ α < 2 = − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

+

∫ T

0

{ (
Rθt

2(2 − α)

+
2R2θtθ

(2 − α)3
− R2θtθ

(2 − α)3
x2−α +

2R3θ3

(2 − α)3
x2−α +

R2θ2

(2 − α)2

)
xz2

}
|x=0

.

Thus, applying Lemma 3.5 below (since z ∈ H1
a(0, 1) for almost every t), it follows

that, for almost every t ∈ (0, T ),

xz2(t, x) → 0 as x → 0 .

Hence,

(b.t.) for 1 ≤ α < 2 = − 1

2 − α

∫ T

0

{
Rθz2

x

}
|x=1

.

Lemma 3.5. Let α ∈ [1, 2) be given. Then, for all v ∈ H1
a(0, 1),

(3.14) xv2(x) → 0 as x → 0+.
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Proof. Let v be given in H1
a(0, 1). By the definition of H1

a(0, 1) in the case
1 ≤ α < 2, we know that v ∈ L2(0, 1) and

√
avx = xα/2vx ∈ L2(0, 1). Then

xv2 ∈ L1(0, 1). Moreover,

(xv2)x = v2 + 2xvvx,

with v2 ∈ L1(0, 1) and with xvvx = (x1−α/2v) (xα/2vx) ∈ L1(0, 1). Hence, xv2 ∈
W 1,1(0, 1). Thus, xv2 → L ≥ 0 as x → 0+. Finally, L = 0 since L �= 0 would imply
v �∈ L2(0, 1). This completes the proof.

3.4. Conclusion. From Lemmas 3.1 and 3.4 we obtain, for all 0 ≤ α < 2,

〈P+
R z, P−

R z〉 = (d.t.) + (b.t.)

≥ cR3

∫∫
QT

θ3x2−αz2 + cR

∫∫
QT

θxαz2
x − c′

∫ T

0

{
Rθz2

x

}
|x=1

for some constants c, c′ > 0. By (3.4), we have

‖fe−Rσ‖2 = ‖P+
R z‖2 + ‖P−

R z‖2 + 2〈P+
R z, P−

R z〉 ≥ 2〈P+
R z, P−

R z〉

≥ cR3

∫∫
QT

θ3x2−αz2 + cR

∫∫
QT

θxαz2
x − c′

∫ T

0

{
Rθz2

x

}
|x=1

.

We recall that σ(t, x) = θ(t)p(x) and px(x) = −x1−α/(2 − α). Hence, xασ2
x =

cθ2xαx2−2α = cθ2x2−α. Moreover, w = eRσz. Thus, wx = Rσxe
Rσz + eRσzx. There-

fore,

R3θ3x2−αw2 + Rθxαw2
x ≤ R3θ3x2−αe2Rσz2 + Rθxα

(
2R2σ2

xe
2Rσz2 + 2e2Rσz2

x

)
≤ c

(
R3θ3x2−αe2Rσz2 + Rθxαe2Rσz2

x

)
.

So,

∫∫
QT

(
R3θ3x2−αw2 + Rθxαw2

x

)
e−2Rσ ≤ c

∫∫
QT

f2e−2Rσ + c

∫ T

0

{
Rθz2

x

}
|x=1

.

Moreover zx(x = 1) = (e−Rσwx)(x = 1) since z(x = 1) = 0. It follows that

∫∫
QT

(
R3θ3x2−αw2 + Rθxαw2

x

)
e−2Rσ

≤ c

∫∫
QT

f2e−2Rσ + c

∫ T

0

{
Rθe−2Rσw2

x

}
|x=1

.

4. Proof of Theorem 2.3 (observability inequalities). Theorem 2.2 yields
a Carleman estimate for the solutions of (2.5).

Lemma 4.1. For all 0 ≤ α < 2 and all T > 0, there exist positive constants,
R0, C, c > 0, such that, for all vT ∈ L2(0, 1), the solution v of (2.5) satisfies, for all
R ≥ R0, ∫ T

0

∫ 1

0

(
Rθxαv2

x + R3θ3x2−αv2
)
e−2cRθ dxdt ≤ C

∫ T

0

∫
ω

v2dxdt.
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Let us put off the proof of the above lemma and proceed with the reasoning.
Multiplying the equation in (2.5) by vt and integrating by parts, we get

0 =

∫ 1

0

(
vt + (xαvx)x

)
vt dx

=

∫ 1

0

v2
t dx +

[
xαvxvt

]1

0
−
∫ 1

0

xαvxvtx dx ≥ −1

2

d

dt

∫ 1

0

xαv2
x dx.

Therefore t �→
∫ 1

0
xαv2

x dx is increasing and

∫ 1

0

xαvx(0, x)2 dx ≤
∫ 1

0

xαvx(t, x)2 dx ∀t ∈ [0, T ] .

Integrating over [T/4, 3T/4], we have

∫ 1

0

xαvx(0, x)2 dx ≤ 2

T

∫ 3T/4

T/4

∫ 1

0

xαvx(t, x)2 dxdt

≤ C

∫ 3T/4

T/4

∫ 1

0

θxαvx(t, x)2e−2cRθ dxdt.

Hence, owing to Lemma 4.1,

(4.1)

∫ 1

0

xαvx(0, x)2 dx ≤ C

∫ T

0

∫
ω

v2dxdt.

Proof of Lemma 4.1. Let ω = (x0, x1) with 0 ≤ x0 < x1 ≤ 1 and consider a
smooth cut-off function ψ : R → R, such that⎧⎪⎨

⎪⎩
0 ≤ ψ(x) ≤ 1 ∀x ∈ R,

ψ(x) = 1 for x ∈ (0, (2x0 + x1)/3),

ψ(x) = 0 for x ∈ ((x0 + 2x1)/3, 1).

We define w := ψv where v is the solution of (2.5). Then w satisfies

(4.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt + (awx)x = (aψxv)x + ψxavx =: f, (t, x) ∈ QT ,

w(t, 1) = 0, t ∈ (0, T ),

and

{
w(t, 0) = 0 for 0 ≤ α < 1,

(awx)(t, 0) = 0 for 1 ≤ α < 2,
t ∈ (0, T ).

Therefore, applying Theorem 2.2 and using the fact that w ≡ 0 in a neighborhood of
x = 1 (hence wx(1, t) = 0), we have, for all R ≥ R0,∫∫

QT

(
Rθxαw2

x + R3θ3x2−αw2
)
e−2Rσ dxdt ≤ C

∫∫
QT

e−2Rσf2dxdt.

Then using the definition of ψ and in particular the fact that ψx and ψxx are supported
in ω′ := ((2x0 + x1)/3, (x0 + 2x1)/3), we can write

f2 =
(
(aψxv)x + ψxavx

)2

=
(
axψxv + 2aψxvx + aψxxv

)2

χω′ ≤ C(v2 + v2
x)χω′ ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CARLEMAN ESTIMATES FOR DEGENERATE PARABOLIC OPERATORS 15

since the function ax is bounded on ω′. Hence

∫∫
QT

(
Rθxαw2

x + R3θ3x2−αw2
)
e−2Rσ dxdt ≤ C

∫ T

0

∫
ω′

e−2Rσ(v2
x + v2)dxdt,(4.3)

where ω′ := ((2x0 + x1)/3, (x0 + 2x1)/3). At this point, let us apply the following
standard estimate, to be proved later on.

Lemma 4.2 (Caccioppoli’s inequality). For all R > 0,

∫ T

0

∫
ω′

e−2Rσv2
xdxdt ≤ C(R, T )

∫ T

0

∫
ω

v2dxdt.

Let us continue with the proof of Lemma 4.1. The proof of Lemma 4.2 will be
given later. By (4.3) and Lemma 4.2, we obtain a bound for v on (0, (2x0 + x1)/3) of
the form ∫ T

0

∫ (2x0+x1)/3

0

(
Rθxαv2

x + R3θ3x2−αv2
)
e−2Rσ dxdt

=

∫ T

0

∫ (2x0+x1)/3

0

(
Rθxαw2

x + R3θ3x2−αw2
)
e−2Rσ dxdt

≤
∫∫

QT

(
Rθxαw2

x + R3θ3x2−αw2
)
e−2Rσ dxdt ≤ CR

∫ T

0

∫
ω

v2dxdt.

Hence,

∫ T

0

∫ (2x0+x1)/3

0

(
Rθxαv2

x + R3θ3x2−αv2
)
e−2c0Rθ dxdt ≤ CR

∫ T

0

∫
ω

v2dxdt,

where c0 = max {p(x);x ∈ [0, 1]} = 2/(2 − α)2.

Now, to complete the reasoning, one has to recover a similar inequality on the
interval ((x0 + 2x1)/3, 1). But the equation is uniformly parabolic on such a domain.
Therefore, the well-known Carleman estimate for the nondegenerate case (see [26])
yields, for R large enough,

∫ T

0

∫ 1

(x0+2x1)/3

(
Rθv2

x + R3θ3v2
)
e−2c1Rθ dxdt ≤ CR

∫ T

0

∫
ω

v2dxdt

for some constant c1 > 0. Indeed it is sufficient to apply the classical Carleman
estimate to the function ṽ = ρv in the space interval ((2x0+x1)/3, 1), where ρ : R → R

is some smooth cut-off function, such that⎧⎪⎨
⎪⎩

0 ≤ ρ(x) ≤ 1 ∀x ∈ R,

ρ(x) = 1 for x ∈ ((x0 + 2x1)/3, 1),

ρ(x) = 0 for x ∈ (0, (2x0 + x1)/3).

Hence we obtain∫ T

0

∫ 1

(x0+2x1)/3

(
Rθxαv2

x + R3θ3x2−αv2
)
e−2c1Rθ dxdt ≤ CR

∫ T

0

∫
ω

v2dxdt.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

16 P. CANNARSA, P. MARTINEZ, AND J. VANCOSTENOBLE

Combining the above estimates and using Lemma 4.2 to bound the integral on
the middle interval, we obtain∫ T

0

∫ 1

0

(
Rθxαv2

x + R3θ3x2−αv2
)
e−2c2Rθ dxdt ≤ CR

∫ T

0

∫
ω

v2dxdt,

where c2 = max (c0, c1).
Proof of Lemma 4.2. Consider a smooth function ξ : R → R such that⎧⎪⎨

⎪⎩
0 ≤ ξ(x) ≤ 1 ∀x ∈ R,

ξ(x) = 1 for x ∈ ω′,

ξ(x) = 0 for x �∈ ω.

Then, for all R > 0,

0 =

∫ T

0

d

dt

∫ 1

0

ξ2e−2Rσv2 =

∫∫
QT

−2ξ2Rσte
−2Rσv2 + 2ξ2e−2Rσvvt

= −2

∫∫
QT

ξ2Rσte
−2Rσv2 − 2

∫∫
QT

ξ2e−2Rσv(avx)x

= −2

∫∫
QT

ξ2Rσte
−2Rσv2 + 2

∫∫
QT

(ξ2e−2Rσv)xavx

= −2

∫∫
QT

ξ2Rσte
−2Rσv2 + 2

∫∫
QT

a(ξ2e−2Rσ)xvvx + ξ2e−2Rσav2
x.

Hence,

2

∫∫
QT

ξ2e−2Rσav2
x = 2

∫∫
QT

ξ2Rσte
−2Rσv2 − 2

∫∫
QT

a(ξ2e−2Rσ)xvvx

= 2

∫∫
QT

ξ2Rσte
−2Rσv2 − 2

∫∫
QT

(√
aξe−Rσvx

)(√
a
(ξ2e−2Rσ)x

ξe−Rσ
v
)

≤ 2

∫∫
QT

ξ2Rσte
−2Rσv2 +

∫∫
QT

(√
aξe−Rσvx

)2

+

∫∫
QT

(√
a
(ξ2e−2Rσ)x

ξe−Rσ
v
)2

≤ 2

∫∫
QT

ξ2Rσte
−2Rσv2 +

∫∫
QT

(√
a
(ξ2e−2Rσ)x

ξe−Rσ
v
)2

+

∫∫
QT

ξ2e−2Rσav2
x.

Therefore,

∫∫
QT

ξ2e−2Rσav2
x ≤ 2

∫∫
QT

ξ2Rσte
−2Rσv2 +

∫∫
QT

(√
a
(ξ2e−2Rσ)x

ξe−Rσ
v
)2

≤ C(R, T )

∫ T

0

∫
ω

v2.

5. Proof of Theorem 2.4 (controllability result). By standard arguments,
the null controllability result stated in Theorem 2.4 follows from (2.7). Hence it
remains to prove (2.7). For α �= 1, we apply Hardy’s inequality (Lemma 2.1) with
α� = α to deduce from (2.6) that∫ 1

0

xα−2v(0, x)2 dx ≤ C

∫ 1

0

xαvx(0, x)2 dx ≤ C

∫ T

0

∫
ω

v2dxdt.
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In the case of α = 1, from (2.6) we deduce that, for all 0 < η < 1,

∫ 1

0

x1+ηvx(0, x)2 dx ≤
∫ 1

0

xvx(0, x)2 dx ≤ C

∫ T

0

∫
ω

v2dxdt.

Now, applying Hardy’s inequality (Lemma 2.1) with α� = 1 + η, we obtain

∫ 1

0

xη−1v(0, x)2 dx ≤ C

∫ 1

0

x1+ηvx(0, x)2 dx ≤ C

∫ T

0

∫
ω

v2dxdt.

In both cases, (2.7) follows.

6. Proof of Lemma 2.1 (Hardy’s inequalities).

First case. 0 ≤ α� < 1. Since z is absolutely continuous on (0, 1), we have

|z(x) − z(ε)|2 =

(∫ x

ε

zx(s)s(3−γ)/4s(−3+γ)/4 ds

)2

≤
(∫ x

ε

zx(s)2s(3−γ)/2 ds
)(∫ x

ε

s(−3+γ)/2 ds
)
,

where we denote γ := 2 − α� ∈ (1, 2]. Letting ε → 0+, we get

|z(x)|2 ≤
(∫ x

0

zx(s)2s(3−γ)/2 ds
)(∫ x

0

s(−3+γ)/2 ds
)
.

Therefore

∫ 1

0

xα�−2z(x)2 dx ≤
∫ 1

0

x−γ
(∫ x

0

zx(s)2s(3−γ)/2 ds
)(∫ x

0

s(−3+γ)/2 ds
)
dx

=

∫ 1

0

x−γ
(∫ x

0

zx(s)2s(3−γ)/2 ds
) x(γ−1)/2

(γ − 1)/2
dx

=
2

γ − 1

∫ 1

0

zx(s)2s(3−γ)/2
(∫ 1

s

x(−γ−1)/2 dx
)
ds

≤ 2

γ − 1

∫ 1

0

zx(s)2s(3−γ)/2 s(1−γ)/2

(γ − 1)/2
ds =

4

(1 − α�)2

∫ 1

0

sα
�

zx(s)2 ds.

Second case. 1 < α� < 2. Denoting γ := 2 − α� ∈ (0, 1), we have

∫ 1

0

xα�−2z(x)2 dx ≤
∫ 1

0

x−γ
(∫ 1

x

zx(s)2s(3−γ)/2 ds
)(∫ 1

x

s(−3+γ)/2 ds
)
dx

≤
∫ 1

0

x−γ
(∫ 1

x

zx(s)2s(3−γ)/2 ds
)x−(1−γ)/2

(1 − γ)/2
dx

=
2

1 − γ

∫ 1

0

zx(s)2s(3−γ)/2
(∫ s

0

x(−γ−1)/2 dx
)
ds

≤ 4

(1 − γ)2

∫ 1

0

zx(s)2s2−γ ds =
4

(α� − 1)2

∫ 1

0

sα
�

zx(s)2 ds.
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