In the classical time optimal control problem, it is well known that the so-called Petrov condition is necessary and sufficient for the minimum time function to be locally Lipschitz continuous. In this paper, the same regularity result is obtained in the presence of nonsmooth state constraints. Moreover, for a special class of control systems we obtain a local semiconcavity result for the constrained minimum time function.

Cannarsa, P., Castelpietra, M. (2008). Lipschitz continuity of the value function for exit time problems with state constraints. JOURNAL OF DIFFERENTIAL EQUATIONS, 245, 616-636.

Lipschitz continuity of the value function for exit time problems with state constraints

CANNARSA, PIERMARCO;
2008-01-01

Abstract

In the classical time optimal control problem, it is well known that the so-called Petrov condition is necessary and sufficient for the minimum time function to be locally Lipschitz continuous. In this paper, the same regularity result is obtained in the presence of nonsmooth state constraints. Moreover, for a special class of control systems we obtain a local semiconcavity result for the constrained minimum time function.
2008
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Time optimal control; Value function; State constraints; Lipschitz continuity; Semiconcavity
Cannarsa, P., Castelpietra, M. (2008). Lipschitz continuity of the value function for exit time problems with state constraints. JOURNAL OF DIFFERENTIAL EQUATIONS, 245, 616-636.
Cannarsa, P; Castelpietra, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Cst_JDE.pdf

accesso aperto

Descrizione: articolo
Dimensione 381.67 kB
Formato Adobe PDF
381.67 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact