This article studies unique continuation for weakly degenerate parabolic equations in one-space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An 15 approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary condition is deduced.

Cannarsa, P., Tort, J., Yamamoto, M. (2012). Unique continuation and approximate controllability for a degenerate parabolic equation. APPLICABLE ANALYSIS, 91(8), 1409-1425 [10.1080/00036811.2011.639766].

Unique continuation and approximate controllability for a degenerate parabolic equation

CANNARSA, PIERMARCO;
2012-01-01

Abstract

This article studies unique continuation for weakly degenerate parabolic equations in one-space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An 15 approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary condition is deduced.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
degenerate parabolic equations; unique continuation; approximate controllability; local Carleman estimate
Cannarsa, P., Tort, J., Yamamoto, M. (2012). Unique continuation and approximate controllability for a degenerate parabolic equation. APPLICABLE ANALYSIS, 91(8), 1409-1425 [10.1080/00036811.2011.639766].
Cannarsa, P; Tort, J; Yamamoto, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Trt-Ymm_AA.pdf

accesso aperto

Dimensione 391.8 kB
Formato Adobe PDF
391.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact