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This article studies unique continuation for weakly degenerate parabolic
equations in one-space dimension. A new Carleman estimate of local type is
obtained to deduce that all solutions that vanish on the degeneracy set,
together with their conormal derivative, are identically equal to zero. An

15 approximate controllability result for weakly degenerate parabolic equa-
tions under Dirichlet boundary condition is deduced.
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20 1. Introduction

We consider a parabolic equation degenerating at the boundary of the space, which
is related to a motivating example of a Crocco-type equation coming from the study
of the velocity field of a laminar flow on a flat plate (see, e.g. [1]).

The null controllability of degenerate parabolic operators in one-space dimension
25 has been well-studied for locally distributed controls. For instance, in [2,3], the

problem

ut � ðx
�uxÞx ¼ �!h, t, xð Þ 2Q :¼ ð0, 1Þ � ð0,T Þ,

u 1, tð Þ ¼ 0, t2 0,Tð Þ,

and
u 0, tð Þ ¼ 0, for 0 � �5 1,

ðx�uxÞ 0, tð Þ ¼ 0, for 1 � �5 2,

�
t2 0,Tð Þ,

u x, 0ð Þ ¼ u0ðxÞ, x2 0, 1ð Þ,

8>>>>><
>>>>>:

where �! denotes the characteristic function of !¼ (a, b) with 05 a5 b5 1, is
shown to be null controllable in L2(0, 1) in any time T4 0. Generalizations of the
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above result to semilinear problems and nondivergence form operators can be found
30 in [4] and [5,6], respectively. The global Carleman estimate derived in [3] was also

used in [7] to prove Lipschitz stability estimates for inverse problems relative to

degenerate parabolic operators.
It is a commonly accepted viewpoint that, if a system is controllable via locally

distributed controls, then it is also controllable via boundary controls and vice versa.
35 This is indeed the case for uniformly parabolic operators. For degenerate operators,

on the contrary, no null controllability result is available in the literature – to the best

of our knowledge – when controls act on ‘degenerate’ parts of the boundary. Indeed,

in this case, switching from locally distributed to boundary controls is by no means

automatic for at least two reasons. In the first place, Dirichlet boundary data can
40 only be imposed in weakly degenerate settings (i.e. when 0��5 1), since otherwise

solutions may not define a trace on the boundary, see [8, section 5]. Secondly, the

standard technique which consists in enlarging the space domain and placing an

‘artificial’ locally distributed control in the enlarged region would lead to an

unsolved problem in the degenerate case. Indeed, such a procedure requires being
45 able to solve the null controllability problem for an operator which degenerates in

the interior of the space domain, with controls acting only on one side of the domain

with respect to the point of degeneracy.
In this article, we establish a simpler result, that is, the approximate controlla-

bility via controls at the ‘degenerate’ boundary point for the weakly degenerate
50 parabolic operator

Pu :¼ ut � ðx
�uxÞx, in Qð0 � �5 1Þ:

In order to achieve this, we follow the classical duality argument that reduces the

problem to the unique continuation for the adjoint of P, that is, the operator

Lu :¼ ut þ ðx
�uxÞx, in Q,

with boundary conditions

uð0, tÞ ¼ ðx�uxÞð0, tÞ ¼ 0: ð1Þ

To solve such a problem, in Section 2, we derive new local Carleman estimates for L,
55 in which the weight function exhibits a decreasing behaviour with respect to x

(Theorem 2.3). Then, in Section 3, we obtain our unique continuation result proving

that any solution u of Lu¼ 0 in Q, which satisfies (1), must vanish identically in Q

(Theorem 3.1). Finally, in Section 4, we show how to deduce the approximate

controllability with Dirichlet boundary control for the weakly degenerate problem
60 (0��5 1)

ut � ðx
�uxÞx ¼ 0, t, xð Þ 2Q,

u t, 1ð Þ ¼ 0, t2 0,Tð Þ,

u t, 0ð Þ ¼ gðtÞ, t2 0,Tð Þ,

u 0, xð Þ ¼ u0ðxÞ, x2 0, 1ð Þ:

8>>><
>>>:

The outline of this article is as follows. In Section 2, we derive our local Carleman

estimate. Then, in Section 3, we apply such an estimate to deduce a unique

2 P. Cannarsa et al.
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continuation result for L. Finally, in Section 4, we obtain approximate controlla-

bility with Dirichlet boundary controls as a consequence of unique continuation.

65

2. A Carleman estimate with decreasing-in-space weight functions

We begin by recalling the definition of the function spaces that will be used

throughout this article. The reader is referred to [3,4] for more details on these

spaces.
For any �2 (0, 1) we define H1

� 0, 1ð Þ to be the space of all absolutely continuous
70 functions u: [0, 1]!R such thatZ 1

0

x�juxðxÞj
2 dx51,

where ux denotes the derivative of u. Like the analogous property of standard

Sobolev spaces, one can prove that H1
� 0, 1ð Þ � Cð½0, 1�Þ. So, one can also set

H1
�,0 0, 1ð Þ ¼ u2H1

� 0, 1ð Þ : u 0ð Þ ¼ u 1ð Þ ¼ 0
� �

:

Now, define the operator A: D(A)�L2(0, 1)!L2(0, 1) by

DðAÞ :¼ u2H1
�,0 0, 1ð Þ : x�ux 2H

1 0, 1ð Þ

n o
,

Au ¼ x�uxð Þx 8u2DðAÞ:

(

We recall that A is the infinitesimal generator of an analytic semigroup of
75 contractions on L2(0, 1), and D(A) is a Banach space with the graph norm

jujDðAÞ ¼ kukL2 0, 1ð Þ þ kAukL2 0, 1ð Þ:

Example 2.1 As one can easily check by a direct calculation, x � 1� x1� � belongs

to H1
� 0, 1ð Þ and

ðx�uxÞx ¼ 0 8x2 ½0, 1�:

However, f 6 2D(A) since f(0)¼ 1.

LEMMA 2.2 Let u2D(A) be such that x�ux! 0 as x! 0. Then

jx�uxðxÞj � jujDðAÞ
ffiffiffi
x
p

8x2 ½0, 1� ð2Þ

80 and

jx��1uðxÞj �
2

3� 2�
jujDðAÞ

ffiffiffi
x
p

8x2 ½0, 1� ð3Þ

Moreover, for any �4 0,Z 1

0

x2�þ��4u2 dx þ

Z 1

0

x2�þ��2u2x dx � cð�,�Þ juj2DðAÞ, ð4Þ

where c(�,�)¼ ��1[1þ 2(3� 2�)�2].

Applicable Analysis 3
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Proof Let u2D(A) be such that x�ux! 0 as x! 0. Since

x�uxðxÞ ¼

Z x

0

d

ds
s�
du

ds
ðsÞ

� �
ds,

(2) follows by Hölder’s inequality. Then, owing to (2),

juðxÞj �

Z x

0

���s� du
ds
ðsÞ
��� s�� ds � jujDðAÞ

Z x

0

s
1
2�� ds,

85 which in turn yields (3). Next, in view of (2),Z 1

0

x2�þ��2u2x dx � juj
2
DðAÞ

Z 1

0

x��1 dx ¼
1

�
juj2DðAÞ:

Finally, on account of (3),Z 1

0

x2�þ��4u2 dx �
2

3� 2�

� �2

juj2DðAÞ

Z 1

0

x��1 dx:

The proof of (4) is thus complete. g

2.1. Statement of the Carleman estimate

Let T4 0. Hereafter, we set

Q ¼ ð0, 1Þ � ð0,T Þ:

90 Moreover, for any integrable function f on Q, we will use the abbreviated notationZ
Q

f ¼

Z
Q

f ðx, tÞdxdt:

Let 05�5 1 and fix �2 ð1� �, 1� �
2Þ. Define the weight functions l, p and � as

8t2 ð0,T Þ, l ðtÞ :¼
1

tðT� tÞ
, ð5Þ

8x2 ð0, 1Þ, pðxÞ :¼ �x� ð6Þ

and

8ðx, tÞ 2Q, �ðx, tÞ :¼ pðxÞl ðtÞ: ð7Þ

For any function v2L2(0,T; D(A))\H1(0,T; L2(0, 1)), we set

Lv :¼ vt þ ðx
�vxÞx:

95 We will prove the following Carleman estimate:

THEOREM 2.3 Let v2L2(0,T; D(A))\H1(0,T; L2(0, 1)), and suppose that, for a.e.

t2 (0,T ),

vð0, tÞ ¼ ðx�vxÞð0, tÞ ¼ vð1, tÞ ¼ ðx�vxÞð1, tÞ ¼ 0:

4 P. Cannarsa et al.
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Then the functions

ðx, tÞ� ½l3ðtÞx2�þ3��4 þ l ðtÞx2�þ��4�v2ðx, tÞe2s�ðx,tÞ

and

ðx, tÞ� l ðtÞx2�þ��2v2xðx, tÞe
2s�ðx,tÞ

8><
>: ð8Þ

are integrable over Q. Moreover, there exist constants C¼C(T,�,�)4 0 and s0¼
100 s0(T,�,�)4 0 such that, for all s� s0,Z

Q

s3l3x2�þ3��4 þ slx2�þ��4
	 


v2e2s� þ

Z
Q

slx2�þ��2v2xe
2s� � C

Z
Q

jLvj2e2s�: ð9Þ

The proof is inspired by [9,10], where global Carleman estimates for uniformly
parabolic equations were first obtained, and by [3,4,7], where this technique was
adapted to degenerate parabolic operators by the choice of appropriate weight
functions.

105 We now proceed to derive another Carleman estimate which follows from (9) and
yields unique continuation, deferring the proof of Theorem 2.3 to the following
section.

COROLLARY 2.4 Let v2L2(0,T; D(A))\H1(0,T; L2(0, 1)) and suppose that, for a.e.
t2 (0,T ),

vð0, tÞ ¼ ðx�vxÞð0, tÞ ¼ vð1, tÞ ¼ ðx�vxÞð1, tÞ ¼ 0:

110 Then there exist constants C¼C(T,�,�)4 0 and s0¼ s0(T,�,�)4 0 such that for
all s� s0, Z

Q

s3l3v2e2s� þ

Z
Q

slx2�þ��2v2xe
2s� � C

Z
Q

jLvj2e2s�: ð10Þ

Proof Since �5 1� �
2, we have that 4�5 4� 2� and 2�þ 4�� 45 0. Moreover,

2�þ 3�� 45 2�þ 4�� 45 0 since �4 0. Consequently, x2�þ3��4� 1 for all
x2 (0, 1). Then,

Z
Q

s3l3v2e2s� �

Z
Q

s3l3x2�þ3��4v2e2s�

115 and the proof is complete. g

2.2. Proof of Theorem 2.3

Let v2L2(0,T; D(A))\H1(0,T; L2(0, 1)) and suppose that, for a.e. t2 (0,T ),

vð0, tÞ ¼ ðx�vxÞð0, tÞ ¼ vð1, tÞ ¼ ðx�vxÞð1, tÞ ¼ 0: ð11Þ

LEMMA 2.5 Let w :¼ ves�. Then w belongs to L2(0,T; D(A))\H1(0,T; L2(0, 1)) and
satisfies, for a.e. t2 (0,T ),

wð0, tÞ ¼ wð1, tÞ ¼ 0 ð12Þ

Applicable Analysis 5
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120 and

ðx�wxÞð0, tÞ ¼ ðx
�wxÞð1, tÞ ¼ 0: ð13Þ

Moreover, w satisfies Lsw¼ es�Lv, where Lsw ¼ Lþs wþ L�s w, and

Lþs w ¼ ðx
�wxÞx � s�twþ s2x��2xw,

L�s w ¼ wt � 2sx��xwx � sðx��xÞxw:
ð14Þ

Furthermore, Lþs w,L
�
s w2L

2ðQÞ andZ
Q

Lþs w L�s w ¼
s

2

Z
Q

�ttw
2 þ s

Z
Q

x�ðx��xÞxxwwx þ 2s2
Z
Q

x��x�txw
2

þ s

Z
Q

2x2��xx þ �x
2��1�x

� �
w2
x þ s3

Z
Q

2x��xx þ �x
��1�x

� �
x��2xw

2:

ð15Þ

Proof One easily checks that, for a.e. t2 (0,T ),

x�wx ¼ sx��xve
s� þ x�vxe

s�:

Note that, because of our choice (6), �x¼��lx
��1, so that x��x¼��lx

�þ��1. Then,
125 the fact that w2L2(0,T; D(A))\H1(0,T; L2(0, 1)), as well as (12) and (13), follows

from Lemma 2.2 and (11). Similarly, one can show Lþs w,L
�
s w2L

2ðQÞ. As for (15),

one obtainsZ
Q

Lþs wL�s w ¼
s

2

Z
Q

�ttw
2 þ s

Z
Q

x�ðx��xÞxxwwx þ 2s2
Z
Q

x��x�txw
2

þ s

Z
Q

ð2x2��xx þ �x
2��1�xÞw

2
x þ s3

Z
Q

ð2x��xx þ �x
��1�xÞx

��2xw
2

þ

Z T

0

h
x�wxwt � s�xðx

�wxÞ
2
þ s2x��t�xw

2

� s3x2��3xw
2 � sx�ðx��xÞxwwx

ix¼1
x¼0

dt:

This formula can be derived integrating by parts as in [4, Lemma 3.4], once one has

checked that every integral on the right-hand side does exist. For the sake of brevity,
130 we shall defer the proof of the last assertion to the reasoning below, where we

provide bounds for each integrand. One can thus complete the proof recalling

Lemma 2.2, together with (12) and (13), to deduce that the boundary terms are all

equal to zero, so that the above identity reduces to (15). g

We can now proceed with the proof of Theorem 2.3. Let us first note that the
135 integrability of the functions in (8) is a consequence of Lemma 2.2. Next, since

es�Lv ¼ Lþs wþ L�s w, identity (15) yields

kes�Lvk2L2ðQÞ � s

Z
Q

�ttw
2 þ 2s

Z
Q

x�ðx��xÞxxwwx þ 4s2
Z
Q

x��x�txw
2

þ 2s

Z
Q

ð2x2��xx þ �x
2��1�xÞw

2
x þ 2s3

Z
Q

ð2x��xx þ �x
��1�xÞx

��2xw
2:

6 P. Cannarsa et al.
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Let us denote by
P5

k¼1 Jk the right-hand side of the above estimate. We will now use

the properties of the weight functions in (5), (6) and (7) to bound each Jk.
First of all, we have

jJ1j ¼
���s Z

Q

�ttw
2
��� � s

Z
Q

jl00jw2:

140 Yet, one can easily check that there exists a constant C¼C(T )4 0 such that, for all

t2 (0,T ), jl00(t)j �Cl3(t). Then, there exists C¼C(T )4 0 such that

jJ1j � Cs

Z
Q

l3w2: ð16Þ

Observe that, although l3(t) is unbounded in Q, the above integral is finite by

construction. Indeed, the exponential weight es� in the definition of w suffices for the

convergence of the integral. Similar considerations that apply to all other terms Jk
145 will not be repeated.

Now, to estimate J2¼ 2s
R
Qx

�(x��x)xxwwx observe that �x(x, t)¼��l(t)x
��1.

Then, x��x(x, t)¼��l(t)x
�þ��1 and

x�ðx��xÞxx ¼ ��ð�þ �� 1Þð�þ �� 2Þl ðtÞx2�þ��3: ð17Þ

Since

jx�ðx��xÞxxwwxj � Cð�,�Þl ðtÞ½x2�þ��4w2 þ x2�þ��2w2
x�,

the integral in the definition of J2 converges by (4). Moreover, in view of (12) and
150 Lemma 2.2, we have

J2 ¼ s

Z
Q

x�ðx��xÞxx@xðw
2Þ ¼ �s

Z
Q

ðx�ðx��xÞxxÞxw
2,

where

ðx�ðx��xÞxxÞx ¼ ��ð�þ �� 1Þð�þ �� 2Þð2�þ �� 3Þl ðtÞx2�þ��4:

Let us show that the product �(�þ�� 1)(�þ �� 2)(2�þ �� 3) is positive. First of

all, since 1� �5�, we have �þ �� 14 0. Since �5 1 and �5 1, �þ �� 25 0.

Also,

2�þ �� 35 2�þ 1�
�

2
� 3 ¼

3

2
�� 25 0,

155 since �5 1. Therefore, �(�þ�� 1)(�þ �� 2)(2�þ �� 3)4 0. Then, there exists

C¼C(�,�)4 0 such that

J2 � Cð�,�Þs

Z
Q

lx2�þ��4w2: ð18Þ

Next, we have

J3 ¼ 4s2
Z
Q

x�ð��x��1l ðtÞÞð��x��1l0ðtÞÞw2 ¼ 4s2
Z
Q

l ðtÞl0ðtÞ�2x�þ2��2w2,

Applicable Analysis 7
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where we observe that the integral is finite since, by (3),

x�þ2��2w2ðx, tÞ �
4

ð3� 2�Þ2
jwð�, tÞj2DðAÞx

1þ2��� :

Also, jl(t)l
0

(t)j �Cl3(t) for all t2 (0,T ) and some constant C¼C(T )4 0. Then,

jJ3j � Cs2
Z
Q

l3ðtÞx�þ2��2w2: ð19Þ

160 Computing the derivatives in J4, one has

J4 ¼ 2s

Z
Q

ð�2�ð�� 1Þl ðtÞx2�þ��2 � ��l ðtÞx�þ��1þ��1Þw2
x

¼ 2s

Z
Q

l ðtÞ�x2�þ��2ð�2�þ 2� �Þw2
x,

where the integral is finite by (4). Moreover, �5 1� �
2, so that �2�� �þ 24 0.

Then, for some C¼C(�,�)4 0

J4 ¼ Cð�,�Þs

Z
Q

l ðtÞx2�þ��2w2
x: ð20Þ

Finally, arguing in the same way for J5 we have

J5 ¼ 2s3
Z
Q

ð�2�ð�� 1Þl ðtÞx�þ��2 � ��l ðtÞx��1þ��1Þl2ðtÞ�2x�þ2��2w2

¼ 2s3
Z
Q

�3l3ðtÞð�2�þ 2� �Þx2�þ3��4w2,

where the convergence of the integral is again ensured by (4). Since �2�þ 2� �4 0,
165 there exists C¼C(�,�)4 0 such that

J5 ¼ Cð�,�Þs3
Z
Q

l3ðtÞx2�þ3��4w2: ð21Þ

Coming back to (15), and using (16), (18), (19), (20) and (21), one has

kes�Lvk2L2ðQÞ � �Cs

Z
Q

l3w2 þ Cð�,�Þs

Z
Q

lx2�þ��4w2 � Cs2
Z
Q

l3ðtÞx�þ2��2w2

þ Cð�,�Þs

Z
Q

l ðtÞx2�þ��2w2
x þ Cð�,�Þs3

Z
Q

l3ðtÞx2�þ3��4w2:

So, we can immediately deduce that, for some constant C¼C(T,�,�)4 0,Z
Q

s3l3ðtÞx2�þ3��4w2 þ sl ðtÞx2�þ��4
� �

w2 þ

Z
Q

sl ðtÞx2�þ��2w2
x

� C kes�Lvk2L2ðQÞ þ s

Z
Q

l3ðtÞw2 þ s2
Z
Q

l3ðtÞx�þ2��2w2

� �
: ð22Þ

8 P. Cannarsa et al.
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Now, we are going to absorb the two rightmost terms of (22) on the left-hand side.

First of all, we note that

2�þ 3�� 4� ð�þ 2�� 2Þ ¼ �þ �� 25 0:

170 As a consequence, since 05 x5 1,Z
Q

l3ðtÞx�þ2��2w2 �

Z
Q

l3ðtÞx2�þ3��4w2:

Moreover, we have already mentioned that 2�þ 3�� 45 0, so that for all x2 (0, 1),

1� x2�þ3��4 and Z
Q

l3ðtÞw2 �

Z
Q

l3ðtÞx2�þ3��4w2:

Then, (22) becomesZ
Q

ðs3l3ðtÞx2�þ3��4 þ sl ðtÞx2�þ��4Þw2 þ

Z
Q

sl ðtÞx2�þ��2w2
x

� C kes�Lvk2L2ðQÞ þ ðsþ s2Þ

Z
Q

l3ðtÞx2�þ3��4w2

� �
, ð23Þ

with C¼C(T,�,�)4 0. Now, there exists s0¼ s0(T,�,�)4 0 such that, for all s� s0,
175 C(sþ s2)� s3/2. Therefore, for all s� s0 and some C¼C(T,�,�)4 0,Z

Q

s3l3ðtÞx2�þ3��4 þ sl ðtÞx2�þ��4
� �

w2 þ

Z
Q

sl ðtÞx2�þ��2w2
x � Ckes�Lvk2L2ðQÞ: ð24Þ

Eventually, recalling that w¼ ves�, we haveZ
Q

s3l3ðtÞx2�þ3��4 þ sl ðtÞx2�þ��4
� �

v2e2s� þ

Z
Q

sl ðtÞx2�þ��2w2
x � Ckes�Lvk2L2ðQÞ: ð25Þ

Moreover, vxe
s�
¼wx� s�xve

s�. Therefore,Z
Q

sl ðtÞx2�þ��2v2xe
2s� � 2

Z
Q

sl ðtÞx2�þ��2w2
x þ 2s3�2

Z
Q

l3x2��2þ2�þ��2v2e2s�:

Thus, Z
Q

sl ðtÞx2�þ��2v2xe
2s� � 2

Z
Q

sl ðtÞx2�þ��2w2
x þ 2s3�2

Z
Q

l3x2�þ3��4v2e2s�:

The proof of Theorem 2.3 is then completed thanks to (25).

180

3. A unique continuation result

In this section, our goal is to show the following unique continuation property for

the ‘adjoint operator’

Lv ¼ vt þ ðx
�vxÞx in Q:

Applicable Analysis 9
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THEOREM 3.1 Let v2L2(0,T; D(A))\H1(0,T,L2(0, 1)) and suppose that, for a.e.

t2 (0,T ),

vð0, tÞ ¼ ðx�vxÞð0, tÞ ¼ 0: ð26Þ

185 If Lv	 0 in Q, then v	 0 in Q.

Proof Let 05 �5 1 and �� :¼ {x2 (0, 1): p(x)4��}. The first step of the proof

consists in proving that v	 0 in ��� (T/4, 3T/4). First of all, let us note that

x2�� if and only if x5 �1=�: ð27Þ

Now, let us take �2 (�, 1) and �2C1(R) such that 0��� 1 and

�ðxÞ ¼
1, x2��,

0, x 6 2��:

�

From the definition of � above and (27), we deduce that

8x2 ½0, �1=��, �ðxÞ ¼ 1, ð28Þ

190 and

8x2 ½�1=�, 1�, �ðxÞ ¼ 0: ð29Þ

Define u2L2(0,T; D(A))\H1(0,T; L2(0, 1)) by u :¼�v, and observe that

Lu ¼ @tuþ ðx
�uxÞx ¼ �vt þ ðx

�ð�vÞxÞx:

Hence, after some standard computations, we get

Lu ¼ �00x�vþ �0�x��1vþ 2�0x�vx: ð30Þ

In order to appeal to Corollary 2.4, we have to check that u satisfies the required

boundary conditions. First of all, for a.e. t2 (0,T ), u(0, t)¼�(0)v(0, t)¼ 0 by (26),
195 and u(1, t)¼�(1)v(1, t)¼ 0 by(29). Moreover, ux¼�xvþ�vx, so that x�ux¼ x��xvþ

�x�vx. Using assumption (26) and property (28) for �, one gets that (x�ux)(0, t)¼ 0

for a.e. t2 (0,T ). Also, using property (29) for �, one has (x�ux)(1, t)¼ 0 for a.e.

t2 (0,T ). Thus, we are in a position to apply Corollary 2.4 to u. We obtainZ
Q

s3l3u2e2s� þ

Z
Q

slx2�þ��2u2xe
2s� � C

Z
Q

jLuj2e2s�:

Replacing Lu by the expression in (30), we immediately deduce that there exists
200 C¼C(T,�,�)4 0 such thatZ

Q

s3l3u2e2s� þ

Z
Q

slx2�þ��2u2xe
2s�

� C

Z
Q

j�00j2x2� þ j�0j2�2x2��2
� �

v2e2s� þ

Z
Q

j�0j2x2�v2xe
2s�

� �
: ð31Þ
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First of all, using (28) and (29),

Z
Q

j�00j2x2�v2e2s� �

Z �1=�

�1=�

Z T

0

j�00j2v2e2s�: ð32Þ

As for the second term, we have

Z
Q

j�0j2�2x2��2v2e2s� ¼

Z �1=�

�1=�

Z T

0

j�0j2�2x2��2v2e2s�

because of (29). Then,

Z
Q

j�0j2�2x2��2v2e2s� �

Z �1=�

�1=�

Z T

0

�ð2��2Þ=��2j�0j2v2e2s�: ð33Þ

Eventually, the last term satisfies the bound

Z
Q

j�0j2x2�v2xe
2s� �

Z �1=�

�1=�

Z T

0

j�0j2x�v2xe
2s� ð34Þ

205 since 0� x� 1. Coming back to (31) and using (32), (33) and (34), we conclude that

there exists a constant C¼C(T,�,�, �, �)4 0 such that

Z
Q

s3l3u2e2s� þ

Z
Q

slx2�þ��2u2xe
2s� � C

Z �1=�

�1=�

Z T

0

ðj�00j2 þ j�0j2Þðv2 þ x�v2xÞe
2s�:

Therefore, for some constant C¼C(T, �, �, �, �)4 0,

Z
Q

s3l3u2e2s� þ

Z
Q

slx2�þ��2u2xe
2s� � C

Z �1=�

�1=�

Z T

0

ðv2 þ x�v2xÞe
2s�:

Hence,

Z
Q

s3l3u2e2s� � C

Z �1=�

�1=�

Z T

0

ðv2 þ x�v2xÞe
2s�: ð35Þ

Our goal is to estimate the weight e2s� from above in order to simplify the right-hand
210 side of (35). First note that, for all t2 (0,T ), l(t)� l(T/2)¼ 4T�2. Also, since p is

negative and decreasing, for all (x, t)2 (�1/�, �1/�)� (0,T ),

2spðxÞl ðtÞ �
8spðxÞ

T 2
�

8spð�1=�Þ

T 2
:

Then,

Z �1=�

�1=�

Z T

0

ðv2 þ x�v2xÞe
2s� � exp

8spð�1=�Þ

T 2

� �
kvk2L2ð0,T;H1

að0, 1ÞÞ
: ð36Þ
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Now, we want to estimate e2s� from below, so that we may simplify the left-hand side

of (35). We set

Q0 :¼ ðx, tÞ 2Q : pðxÞ4�
�

3
,

T

4
5 t5

3T

4

� 
:

215 First, since l(t)� 4T�2 for all t2 (0,T ), we have

Z
Q

s3l3u2e2s� �

Z
Q

s3
4

T 2

� �3

u2e2s� �

Z
Q0

s3
4

T 2

� �3

u2e2s�:

Moreover, l(t)� 16/3T2 for all T/45 t5 3T/4. So, for all (x, t)2Q0 one has

2spðxÞl ðtÞ � s
32

3T 2
pðxÞ �

4

3

8spðð�=3Þ1=�Þ

T 2
:

Consequently,

Z
Q0

s3
4

T 2

� �3

u2e2s� � s3 exp
4

3

8spðð�=3Þ1=�Þ

T 2

� �Z
Q0

4

T 2

� �3

u2,

¼ s3 exp
4

3

8spð�=3Þ

T 2

� �Z
Q0

4

T 2

� �3

�2v2:

Note that p(x)4��/3 , x2 (0, (�/3)1/�). So, on account of (28),

s3 exp
4

3

8spðð�=3Þ1=�Þ

T 2

� �Z
Q0

4

T 2

� �3

�2v2 ¼ s3 exp
4

3

8spðð�=3Þ1=�Þ

T 2

� �Z
Q0

4

T 2

� �3

v2:

Finally,

Z
Q

s3l3u2e2s� � s3 exp
4

3

8spðð�=3Þ1=�Þ

T 2

� �Z
Q0

4

T 2

� �3

v2: ð37Þ

220 Coming back to (35), and using (36) and (37) we have

s3
4

T 2

� �3

kvk2L2ðQ0Þ
exp

4

3

8spðð�=3Þ1=�Þ

T 2

� �

� CðT,�,�, �Þ exp
8spðð�=3Þ1=�Þ

T 2

� �
T 2kvk2L2ð0,T;H1

�ð0, 1ÞÞ
,

from which we immediately deduce that

kvk2L2ðQ0Þ
� CðT,�,�, �Þkvk2L2ð0,T;H1

�ð0, 1ÞÞ

1

s3
exp

8s

T 2
pð�1=�Þ �

4

3
p ð�=3ð Þ

1=�
Þ

� �� �
:

Now, p(�1/�)� 4p((�/3)1/�)/3¼��þ 4�/9¼�5�/9. Passing to the limit when s!1,

we have that kvk2L2ðQ0Þ
¼ 0. In conclusion,

v 	 0 in 0,
�

3

� �1=�
 !

�
T

4
,
3T

4

� �
:
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To complete the proof, observe that the classical unique continuation for
225 parabolic equations implies that v	 0 in (0, 1)� (T/4, 3T/4). Equivalently,

e(T�t)Av(T )¼ 0 for all t2 (T/4, 3T/4), where etA is the semigroup generated by A.
Since etA is analytic for t4 0, this implies that v	 0 in (0, 1)� (0,T ). g

4. From unique continuation to approximate controllability

Let 05�5 1 and fix T4 0. We are interested in the following initial-boundary-
230 value problem

ut � ðx
�uxÞx ¼ 0, x, tð Þ 2Q ¼ 0, 1ð Þ � 0,Tð Þ,

u 0, tð Þ ¼ gðtÞ, t2 0,Tð Þ,

u 1, tð Þ ¼ 0, t2 0,Tð Þ,

u x, 0ð Þ ¼ u0ðxÞ, x2 0, 1ð Þ:

8>>><
>>>:

ð38Þ

We aim at proving approximate controllability at time T for the above equation,
which amounts to showing that for any final state uT and any arbitrarily small
neighbourhood V of uT, there exists a control g driving the solution of (38) to V at
time T.

235 Boundary control problems can be recast in abstract form in a standard way, see,
e.g. [11]. Here, we follow a simpler method working directly on the parabolic
problem, where the boundary control is reduced to a suitable forcing term. We begin
by discussing the existence and uniqueness of solutions for (38).

4.1. Well-posedness of (38)

240 THEOREM 4.1 For all u0 2H
1
�,0 0, 1ð Þ and all g2H1

0ð0,T Þ, problem (38) has a unique
mild solution u2L2ð0,T;H1

� 0, 1ð Þ \ Cð½0, 1�;L2ð0, 1ÞÞ. Moreover,

sup
t2½0,T�

uðtÞ
�� ��2

L2ð0,1Þ
þ x�=2ux
�� ��2

L2ð0,T;L2ð0,1ÞÞ
� CðT Þ g

�� ��2
H1

0
ð0,T Þ
þ u0k k

2
L2ð0,1Þ

� �
: ð39Þ

Furthermore, (x�ux)x2L
2(0,T; L2(0, 1)) and (38) is satisfied almost everywhere.

Proof Let u0 2H
1
�,0 0, 1ð Þ and g2H1

0ð0,T Þ. Let us introduce the initial-boundary-
value problem with homogeneous boundary conditions

yt � ðx
�yxÞx ¼ �ð1� x1��Þ gt, x, tð Þ 2Q,

y 0, tð Þ ¼ 0, t2 0,Tð Þ,

y 1, tð Þ ¼ 0, t2 0,Tð Þ,

y x, 0ð Þ ¼ u0ðxÞ, x2 0, 1ð Þ:

8>>><
>>>:

ð40Þ

245 Let us first prove the existence of a solution of (38). Using the fact that A is the
infinitesimal generator of an analytic semigroup, we know that problem (40) has a
unique solution y2L2(0,T; D(A))\H1(0,T; L2(0, 1)) (see, e.g. [2,7]). Moreover,
multiplying the first equation of (40) by y and integrating over Q,

sup
t2½0,T�

yðtÞ
�� ��2

L2ð0,1Þ
þ x�=2yx
�� ��2

L2ð0,T;L2ð0,1ÞÞ
� CðT,�Þ g

�� ��2
H1

0
ð0,T Þ
þ u0k k

2
L2ð0,1Þ

� �
: ð41Þ
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Set, for a.e. (x, t)2Q,

uðx, tÞ :¼ yðx, tÞ þ ð1� x1��Þ gðtÞ: ð42Þ

250 Then, u2H1ð0,T;L2ð0, 1ÞÞ \ L2ð0,T;H1
� 0, 1ð ÞÞ and, as we observed in Example 2.1,

(x�ux)x¼ (x�yx)x2L
2(0,T; L2(0, 1)). Moreover,

utðx, tÞ ¼ ytðx, tÞ þ ð1� x1��Þ gtðtÞ

¼ ðx�yxÞxðx, tÞ � ð1� x1��Þ gtðtÞ þ ð1� x1��Þ gtðtÞ

¼ ðx�yxÞxðx, tÞ ¼ ðx
�uxÞxðx, tÞ,

for a.e. (x, t)2Q. Since u2L2ð0,T;H1
� 0, 1ð ÞÞ, for a.e. t2 (0,T ), u(0, t) and u(1, t) exist.

Therefore, using (42), u(0, t)¼ g(t) and u(1, t)¼ 0. Also, for a.e. x2 (0, 1),

u(x, 0)¼ y(x, 0)¼ u0(x) since g2H1
0ð0,T Þ. Consequently, u is a mild solution of

255 (38) satisfying (x�ux)x2L
2(0,T;L2(0,1)) and u2H1(0,T; L2(0, 1)). Finally, estimate

(39) follows from (41) and (42).
Next, let us prove uniqueness. Let u1 and u2 be two solutions of (38). Then, the

difference w :¼ u1� u2 is a solution of (40), with g	 0 and u0	 0. Because of the

uniqueness property of problem (40), w	 0. g

260

4.2. Approximate controllability

Our goal now is to show the following theorem.

THEOREM 4.2 Let u0 2H
1
�,0 0, 1ð Þ. For all uT2L

2(0, 1) and all �4 0 there exists

g2H1
0ð0,T Þ such that the solution ug of problem (38) satisfies

ugðT Þ � uT
�� ��

L2ð0,1Þ
� �:

We start the proof with a lemma.

265 LEMMA 4.3 If the conclusion of Theorem 4.2 is true for u0	 0, then it is true for any

u0 2H
1
�,0 0, 1ð Þ.

Proof Let u0 2H
1
�,0 0, 1ð Þ and uT2L

2(0, 1). Let �4 0. Let us introduce û the (mild)

solution of

ût � ðx
�ûxÞx ¼ 0, x, tð Þ 2Q,

û 0, tð Þ ¼ 0, t2 0,Tð Þ,

û 1, tð Þ ¼ 0, t2 0,Tð Þ,

û x, 0ð Þ ¼ u0ðxÞ, x2 0, 1ð Þ:

8>>><
>>>:

Then, û(T )2L2(0, 1). Therefore, using the assumption of Lemma 4.3, there exists

270 g2H1
0ð0,T Þ such that the solution 	g of

	t � ðx
�	xÞx ¼ 0, x, tð Þ 2Q,

	 0, tð Þ ¼ gðtÞ, t2 0,Tð Þ,

	 1, tð Þ ¼ 0, t2 0,Tð Þ,

	 x, 0ð Þ ¼ 0, x2 0, 1ð Þ:

8>>><
>>>:
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satisfies

	gðT Þ � ðuT � ûðT ÞÞ
�� ��

L2ð0,1Þ
� �:

Yet, one can easily see that ug(T )¼	g(T )þ û(T ), so that the proof of Lemma 4.3 is

achieved. g

We now assume that u0	 0.

275 LEMMA 4.4 For all g2H1
0ð0,T Þ, for all v2L

2(0, 1),

ug Tð Þ, v
� �

L2ð0,1Þ
¼

Z T

0

ðx�v̂xÞð0, tÞ gðtÞdt, ð43Þ

where v̂2Cð½0,T �;L2ð0, 1ÞÞ \ L2ð0,T;H1
�,0Þ is the solution of

v̂t þ ðx
�v̂xÞx ¼ 0, x, tð Þ 2Q,

v̂ t, 0ð Þ ¼ 0, t2 0,Tð Þ,

v̂ t, 1ð Þ ¼ 0, t2 0,Tð Þ,

v̂ T, xð Þ ¼ vðxÞ, x2 0, 1ð Þ:

8>>><
>>>:

ð44Þ

Proof Let us multiply by v̂ the equation satisfied by ug. Then, integrating by parts

with respect to the space variable, one has, for almost all t2 (0,T ),

ug,tðtÞ, v̂ðtÞ
� �

L2ð0,1Þ
þ

Z 1

0

x�=2ug,xðtÞx
�=2v̂xðtÞdx ¼ 0: ð45Þ

Moreover, for all �4 0, v̂2L2ð0,T� �;DðAÞÞ \H1ð0,T� �;L2ð0, 1ÞÞ. We multiply
280 by ug the equation satisfied by v̂ on (0,T� �). After a standard integration by parts

with respect to the space variable, one has, for a.e. t2 (0,T� �),

ugðtÞ, v̂tðtÞ
� �

L2ð0,1Þ
�

Z 1

0

x�=2ug,xðtÞx
�=2v̂xðtÞdx ¼ ðx

�v̂Þxð0, tÞ gðtÞ: ð46Þ

Adding (45) and (46), one gets, for a.e. t2 (0,T� �),

d

dt
ugðtÞ, v̂ðtÞ
� �

L2ð0,1Þ
¼ ðx�v̂Þxð0, tÞ gðtÞ:

Now, integrating over (0,T� �) and recalling that ug(0)¼ u0¼ 0, one obtains

ugðT� �Þ, v̂ðT� �Þ
� �

L2ð0,1Þ
¼

Z T��

0

ðx�v̂Þxð0, tÞ gðtÞdt: ð47Þ

Since ug2C([0,T]; L
2(0, 1)), v̂2Cð½0,T �;L2ð0, 1ÞÞ and v̂ðT Þ ¼ v, one gets

ug Tð Þ, v
� �

L2ð0,1Þ
¼

Z T

0

ðx�v̂xÞð0, tÞ gðtÞdt,

285 passing to the limit as �# 0. g

Finally, define the control operator B by

B: H1
0ð0,T Þ �!L2ð0, 1Þ, B: g 7 �!ugðT Þ:

Applicable Analysis 15



XML Template (2011) [25.11.2011–6:39pm] [1–17]
K:/GAPA/GAPA_A_639766.3d (GAPA) [PREPRINTER stage]

According to (39), B2LðH1
0ð0,T Þ,L

2ð0, 1ÞÞ. Then, problem (38) is approximately

controllable if and only if the range of B is dense in L2(0, 1). This is equivalent to the

fact that the orthogonal of R(B) is reduced to {0}.

290 LEMMA 4.5 If v2R(B)?, then ðx�v̂xÞð�, 0Þ 	 0.

Proof Take v2R(B)?. According to (43), for all g2H1
0ð0,T Þ,Z T

0

ðx�v̂xÞð0, tÞ gðtÞdt ¼ 0:

Even if t 7 �! ðx�v̂xÞð0, tÞ is not a priori in L2(0,T ), we can conclude that

ðx�v̂xÞð�, 0Þ 	 0. Indeed, take �4 0. Take g2D(0,T� �) and set g	 0 on

(T� �,T ). Then g2H1
0ð0,T Þ and

0 ¼

Z T

0

ðx�v̂xÞð0, tÞ gðtÞdt ¼

Z T��

0

ðx�v̂xÞð0, tÞ gðtÞdt:

295 Yet, t 7 �!ðx�v̂xÞð0, tÞ 2L
2ð0,T� �Þ, so that, by density, for all g2L2(0,T� �),

Z T��

0

ðx�v̂xÞð0, tÞ gðtÞdt ¼ 0:

Therefore, ðx�v̂xÞð�, 0Þ 	 0 on (0,T� �) for all �4 0. g

In order to complete the proof of Theorem 4.2, we just need to apply our unique

continuation result: since the solution v̂ of (44) satisfies ðx�v̂xÞð�, 0Þ 	 0 on (0,T ), we

have that v̂ðT Þ ¼ v ¼ 0.

300 Remark 1 Theorem 4.2 yields the approximate controllability in L2(0, 1) of problem

(38), as is easily seen arguing as follows. Let T4 0, �4 0 and u0, uT2L
2(0, 1). Set

u1¼ eTA/2u0 and observe that, since the semigroup is analytic, u1 2H
1
�,0ð0, 1Þ.

Therefore, owing to Theorem 4.2, there exists g1 2H
1
0ðT=2,T Þ such that the solution

of the problem

ut � ðx
�uxÞx ¼ 0, x, tð Þ 2 0, 1ð Þ � T=2,Tð Þ,

u 0, tð Þ ¼ g1ðtÞ, t2 T=2,Tð Þ,

u 1, tð Þ ¼ 0, t2 T=2,Tð Þ,

u x,T=2ð Þ ¼ u1ðxÞ, x2 0, 1ð Þ

8>>><
>>>:

305 satisfies uðT Þ � uT
�� ��

L2ð0,1Þ
� �. Thus, a boundary control g for (38) which steers the

system into an �-neighbourhood of uT is given by

gðtÞ ¼
0, t2 ½0,T=2Þ,

g1ðtÞ, t2 ½T=2,T �:

�
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