Kinematics and statics of tensegrities are addressed by means of a novel algebraic formulation. The inequality constraints, associated to cable-type unilateral structural members, are explicitly enforced in the equilibrium and compatibility problems. Fundamental tensegrity properties (rigidity, pre-stressability, and stability) are focused by a novel structural perspective and algebraic criteria for their assessment are established. Some classical results are generalized to the case of tensegrity models involving both deformable and non-deformable structural members. An operative algorithm for the analysis of the large-displacement elastic tensegrity response is proposed, not limited by special requirements in terms of structural symmetries or member connectivity, and therefore resulting a general design tool. Exemplary applications highlight the effectiveness of the proposed approach for designing tensegrity structures endowed with smart global behavior related to the optimal tuning of structural stiffness.
Maceri, F., Marino, M., Vairo, G. (2014). An operative algebraic formulation for the unilaterally-constrained mechanical problem of smart tensegrities. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 51(19-20), 3333-3349 [10.1016/j.ijsolstr.2014.05.021].
An operative algebraic formulation for the unilaterally-constrained mechanical problem of smart tensegrities
Marino, M;VAIRO, GIUSEPPE
2014-10-01
Abstract
Kinematics and statics of tensegrities are addressed by means of a novel algebraic formulation. The inequality constraints, associated to cable-type unilateral structural members, are explicitly enforced in the equilibrium and compatibility problems. Fundamental tensegrity properties (rigidity, pre-stressability, and stability) are focused by a novel structural perspective and algebraic criteria for their assessment are established. Some classical results are generalized to the case of tensegrity models involving both deformable and non-deformable structural members. An operative algorithm for the analysis of the large-displacement elastic tensegrity response is proposed, not limited by special requirements in terms of structural symmetries or member connectivity, and therefore resulting a general design tool. Exemplary applications highlight the effectiveness of the proposed approach for designing tensegrity structures endowed with smart global behavior related to the optimal tuning of structural stiffness.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.