We give explicit closed combinatorial formulas for the parabolic Kazhdan-Lusztig R-polynomials of the tight quotients of the symmetric groups. We give two formulations of our result, one in terms of permutations and one in terms of Motzkin paths. As an application of our results we obtain explicit closed combinatorial formulas for certain sums and alternating sums of ordinary Kazhdan-Lusztig R-polynomials.

Brenti, F. (2011). Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric groups. JOURNAL OF ALGEBRA, 347(1), 247-261 [doi:10.1016/j.jalgebra.2011.09.001].

Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric groups

BRENTI, FRANCESCO
2011-01-01

Abstract

We give explicit closed combinatorial formulas for the parabolic Kazhdan-Lusztig R-polynomials of the tight quotients of the symmetric groups. We give two formulations of our result, one in terms of permutations and one in terms of Motzkin paths. As an application of our results we obtain explicit closed combinatorial formulas for certain sums and alternating sums of ordinary Kazhdan-Lusztig R-polynomials.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
Coxeter group; Kazhdan-Lusztig theory; tight quotient; permutation; Motzkin path
http://www.sciencedirect.com/science/article/pii/S0021869311004923
Brenti, F. (2011). Parabolic Kazhdan-Lusztig R-polynomials for tight quotients of the symmetric groups. JOURNAL OF ALGEBRA, 347(1), 247-261 [doi:10.1016/j.jalgebra.2011.09.001].
Brenti, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
art48.pdf

accesso aperto

Descrizione: Articolo principale
Dimensione 155.39 kB
Formato Adobe PDF
155.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/102166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact