The variance profile is defined as the power mean of the spectral density function of a stationary stochastic process. It is a continuous and nondecreasing function of the power parameter, p, which returns the minimum of the spectrum (p →−∞), the interpolation error variance (harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the unconditional variance (arithmetic mean, p = 1), and the maximum of the spectrum (p→∞). The variance profile provides a useful characterization of a stochastic process; we focus in particular on the class of fractionally integrated processes. Moreover, it enables a direct and immediate derivation of the Szeg¨o-Kolmogorov formula and the interpolation error variance formula. The article proposes a nonparametric estimator of the variance profile based on the power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic normality. From the empirical standpoint, we propose and illustrate the use of the variance profile for estimating the long memory parameter in climatological and financial time series and for assessing structural change.

Luati, A., Proietti, T., Reale, M. (2012). The Variance profile. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 107(498), 607-621 [10.1080/01621459.2012.682832].

The Variance profile

PROIETTI, TOMMASO;
2012-01-01

Abstract

The variance profile is defined as the power mean of the spectral density function of a stationary stochastic process. It is a continuous and nondecreasing function of the power parameter, p, which returns the minimum of the spectrum (p →−∞), the interpolation error variance (harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the unconditional variance (arithmetic mean, p = 1), and the maximum of the spectrum (p→∞). The variance profile provides a useful characterization of a stochastic process; we focus in particular on the class of fractionally integrated processes. Moreover, it enables a direct and immediate derivation of the Szeg¨o-Kolmogorov formula and the interpolation error variance formula. The article proposes a nonparametric estimator of the variance profile based on the power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic normality. From the empirical standpoint, we propose and illustrate the use of the variance profile for estimating the long memory parameter in climatological and financial time series and for assessing structural change.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore SECS-S/03 - STATISTICA ECONOMICA
English
Interpolation; Long memory; Nonparametric spectral estimation; Predictability
Luati, A., Proietti, T., Reale, M. (2012). The Variance profile. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 107(498), 607-621 [10.1080/01621459.2012.682832].
Luati, A; Proietti, T; Reale, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
TheVarianceProfile_JASA.pdf

accesso aperto

Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/101893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact