
This article was downloaded by: [University of Sydney]
On: 26 July 2012, At: 16:01
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of the American Statistical Association
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/uasa20

The Variance Profile
Alessandra Luati a , Tommaso Proietti b c & Marco Reale d
a Department of Statistics, University of Bologna, Italy
b University of Sydney Business School, NSW, Australia
c University of Rome “Tor Vergata,”, Italy
d Department of Mathematics and Statistics, University of Canterbury, Christchurch, New
Zealand

Accepted author version posted online: 14 May 2012. Version of record first published:
24 Jul 2012

To cite this article: Alessandra Luati, Tommaso Proietti & Marco Reale (2012): The Variance Profile, Journal of the
American Statistical Association, 107:498, 607-621

To link to this article:  http://dx.doi.org/10.1080/01621459.2012.682832

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss, actions,
claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/uasa20
http://dx.doi.org/10.1080/01621459.2012.682832
http://www.tandfonline.com/page/terms-and-conditions


The Variance Profile
Alessandra LUATI, Tommaso PROIETTI, and Marco REALE

The variance profile is defined as the power mean of the spectral density function of a stationary stochastic process. It is a continuous and
nondecreasing function of the power parameter, p, which returns the minimum of the spectrum (p → −∞), the interpolation error variance
(harmonic mean, p = −1), the prediction error variance (geometric mean, p = 0), the unconditional variance (arithmetic mean, p = 1),
and the maximum of the spectrum (p → ∞). The variance profile provides a useful characterization of a stochastic process; we focus in
particular on the class of fractionally integrated processes. Moreover, it enables a direct and immediate derivation of the Szegö-Kolmogorov
formula and the interpolation error variance formula. The article proposes a nonparametric estimator of the variance profile based on the
power mean of the smoothed sample spectrum, and proves its consistency and its asymptotic normality. From the empirical standpoint, we
propose and illustrate the use of the variance profile for estimating the long memory parameter in climatological and financial time series
and for assessing structural change.

KEY WORDS: Interpolation; Long memory; Nonparametric spectral estimation; Predictability.

1. INTRODUCTION

Essential features of a stationary stochastic process can be de-
fined in terms of averages of the spectral density. In particular, it
is well known (Hannan 1970, p. 166; Tong 1979; Whittle 1983,
p. 68) that the unconditional variance of the process, the pre-
diction error variance, and the interpolation, or cross-validatory,
error variance are given, respectively, by the arithmetic, geo-
metric, and harmonic mean of the spectrum.

This recognition motivates the introduction of the variance
profile as a tool for characterizing a stationary stochastic pro-
cess. The variance profile is defined as the power mean, or
Hölder mean, of the spectral density function of the process. If
p denotes the power parameter, the variance profile is a contin-
uous and nondecreasing function of p. For p = −1 (harmonic
mean), it provides the interpolation error variance, that is, the
variance of the estimation error arising when the process at time
t is predicted from the past and future observations. For p = 0
(geometric mean, which is the usual Szegö-Kolmogorov for-
mula), it provides the one-step ahead prediction error variance;
for p = 1 (arithmetic mean), the unconditional variance of the
process is obtained. Also, when p → ±∞, the variance profile
tends to the maximum and the minimum of the spectrum, so
that it provides a measure of the dynamic range of a stochastic
process (see Percival and Walden 1993). For noninteger p, the
variance profile gives, up to a transformation, the unconditional
variance of a power transform of the original process.

The variance profile provides a useful characterization of a
stochastic process based on a functional of the spectral density
and opens the way to the derivation of analytical results and new
estimators of essential features. There are three main theoreti-
cal contributions in this article. First, by defining the variance
profile in terms of the unconditional variance of a stochastic
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process characterized by a fractional power transformed Wold
polynomial, we provide a direct and simple derivation of the
Szegö-Kolmogorov formula and the interpolation error vari-
ance. Second, we propose a nonparametric estimator of the vari-
ance profile based on the power mean of the smoothed sample
spectrum, generalizing the Davis and Jones (1968) and Hannan
and Nicholls (1977) estimators for the prediction error vari-
ance. We prove the consistency and the asymptotic normality
of the estimator, under mild assumptions on the spectral density
function, and discuss its sampling properties. For p = −1, a
novel estimator of the interpolation error variance is provided,
which is an addition to the autoregressive and window estimators
proposed by Battaglia and Bhansali (1987). Third, we illustrate
that the variance profile provides an effective characterization of
fractionally integrated processes; we introduce a feature match-
ing (Xia and Tong 2011) minimum distance estimator of the
memory parameter and discuss its performance.

From the empirical standpoint, we illustrate the use of the
variance profile for estimating the long memory parameter in
climatological and financial time series and for assessing struc-
tural change.

The content of the article can be sketched as follows. The
variance profile is defined in Section 2. In Section 3, the defini-
tion is used to provide an alternative proof of the prediction and
interpolation error variance formulas. We move on to illustrate
how the variance profile can be used to characterize stationary
processes belonging to the class of autoregressive fractionally
integrated moving average (ARFIMA) class encompassing AR,
MA, as well as long-memory processes (Section 4). Section 5
proposes a nonparametric estimator of the variance profile and
derives its asymptotic properties. A new minimum distance esti-
mator of the long memory parameter is introduced. The results
are illustrated in Section 6 with respect to three case studies
dealing with a popular tree rings series characterized by long
memory, the choice of the Box-Cox transformation parameter
for series of absolute returns, and the change in the variance
profile of macroeconomic time series that can be ascribed to the
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so-called Great Moderation. In the conclusions (Section 7), we
hint at other uses of the variance profile.

2. DEFINITION OF THE VARIANCE PROFILE

Let {xt }t∈T be a stationary zero-mean stochastic process in-
dexed by a discrete time set T , with covariance function γk =∫ π
−π e

ıωkdF (ω), where F (ω) is the spectral distribution func-
tion of the process. The spectral representation of the process
is xt = ∫ π

−π e
ıωtdZ(ω), where {Z(ω)}ω∈[−π,π] is an orthogonal

increment stochastic process and E[dZ(ω)dZ(λ)] = δω,λdF (ω),
with δω,λ = 1 for ω = λ and zero otherwise (see, e.g., Brock-
well and Davis 1991, pp. 138–139). We assume that the spec-
tral density function of the process exists, F (ω) = ∫ ω

−π f (λ)dλ,
and that the process is regular (Doob 1953, p. 564), that is∫ π
−π log f (ω)dω > −∞. We further assume that the powers
f (ω)p exist, are integrable with respect to dω, and uniformly
bounded for p in the real line.

The variance profile, denoted by vp, is defined as

vp =
{

1

2π

∫ π

−π
[2πf (ω)]pdω

} 1
p

, (1)

or equivalently vp = {E[2πf (ω)]p} 1
p , where the expectation is

taken with respect to the random variable ω, uniformly dis-
tributed in [−π, π ]. In the limit case, whenp → 0, limp→0 vp =
exp{ 1

2π

∫ π
−π log 2πf (ω)dω}, where the assumptions of a regu-

lar process with uniformly bounded powers of the spectrum
allows exchanging the order between the limit operation and
the integral sign. Under the assumption of integrability of the
power spectrum, limp→∞ vp = max{2πf (ω)}. The result is a
direct consequence of the infinity norm and, actually, a con-
venient way to obtain results about vp for all p is to define
vp(f ) for p > 0, v0(f ) = limp→0 vp(f ) and vp(f ) = v−p( 1

f
),

like in the literature by Hardy, Littlewood, and Pólya (1934),
to which we address the reader for detailed and alternative
proofs of these and other interesting properties of power means.
For instance, it is sufficient to set min f (ω) = 1

max 1
f (ω)

to get

limp→−∞ vp = min 2πf (ω). Thus defined, the variance profile
is a continuous and increasing function of p, since vp < vq for
p < q, except in the case of constant f (ω) (i.e., for a white
noise process, whose variance profile is constant), which can be
proved for positive exponents by the Hölder inequality and then
extended to the negative index case.

For p = 1, 0,−1, vp gives the arithmetic, geometric, and
harmonic mean of the spectral density function, respectively. In
these cases, vp has a physical interpretation, since it is known
(Hannan 1970, p. 166; Tong 1979; Whittle 1983, p. 68) that the
arithmetic, geometric, and harmonic mean of the spectral density
give the unconditional variance, the one-step ahead prediction
error variance and the interpolation error variance of the process
xt , respectively.

That the arithmetic mean of the spectral density function is
the unconditional variance of the process is a straightforward
consequence of the spectral representation of a stationary pro-
cess and its covariance function. On the other hand, the equality
between the geometric mean of 2πf (ω) and the one-step ahead
prediction error variance is due to the remarkable formula by
Szegö (1920; English translation, Szegö and Askey 1982), in

the case of an absolutely continuous spectrum, and by Kol-
mogorov (1941; see English translation 1992), in the general
case. We refer the reader to Grenander and Rosenblatt (1957),
Hannan (1970), Ash and Gardner (1975), Doob (1953), and
Priestley (1981) for alternative derivations and detailed discus-
sions of the Szegö-Kolmogorov formula. In Section 3, we shall
provide a very simple proof of the Szegö-Kolmogorov formula,
based on the variance profile. The equality between the harmonic
mean and the interpolation error variance was also derived by
Kolmogorov (1941), and we shall provide a proof based on the
variance profile as well, but we also refer the reader to Wiener
(1949, p. 59) for a discussion on Kolmogorov’s approach, to
Grenander and Rosenblatt (1957, p. 83) for a formal derivation
in the frequency domain, to Battaglia and Bhansali (1987) and
Pourahmadi (2001, sec. 8.5) for a time domain derivation, and
to Kensahara, Pourahmadi, and Inoue (2009) who used a novel
approach based on duals of random vectors.

It is relevant to redefine the variance profile in terms of the
unconditional variance of an auxiliary process. Let xt = ψ(B)ξt
denote the Wold representation of the process, withψ(B) = 1 +
ψ1B + ψ2B

2 + · · · ,∑j |ψj | < ∞, ξt ∼ WN(0, σ 2), where B
is the lag operator, Bjxt = xt−j , and define the stochastic pro-
cess

upt =
{
ψ(B)pξt = ψ(B)pψ(B)−1xt , for p ≥ 0

ψ(B−1)pξt = ψ(B−1)pψ(B)−1xt , for p < 0,
(2)

with spectral density function 2πfu(ω) = [ψ(eıω)]2pσ 2, satis-
fying 2πfu(ω)(σ 2)p−1 = [2πf (ω)]p. Existence of ψ(B)−1 re-
quires that all the roots of the characteristic equation ψ(B) = 0
are in modulus greater than 1. For arbitrary p, the power
of ψ(B) in Equation (2) is still a power series, ψ(B)p =∑∞

j=0 ϕjB
j , with coefficients given by the recursive relation

ϕj = 1
j

∑j

k=1[k(p + 1) − j ]ψkϕj−k, j > 0, ϕ0 = 1 (see Gould
1974). In most practical applications, a finite version or ap-
proximation of ψ(B) can be considered, say a q dimensional
polynomial ψq(B), with q roots −ζ−1

1 ,−ζ−1
2 , . . . ,−ζ−1

q lying
outside the unit circle to ensure invertibility. Hence, ψq(B)p =
(1 + ζ1B)p(1 + ζ2B)p . . . (1 + ζqB)p, where each factor can
be expanded using the binomial theorem holding for p ∈
R and ζi ∈ C, (1 + ζiB)p = ∑∞

k=0( pk )(ζiB)k , where ( pk ) =
p(p−1)(p−2)···(p−k+1)

k(k−1)(k−2)···1 with initial conditions ( p0 ) = 1, ( p1 ) = p,
and where absolute convergence is implied by invertibility (see
Graham, Knuth, and Patashnik 1994, chap. 5). It then holds that

vp =
{

var(upt )
1

σ 2

} 1
p

σ 2, (3)

where σ 2 is the variance of the innovation process ξt .
Hence, the variance profile can be interpreted as the re-

verse transformation of the unconditional variance of a frac-
tional power transformation of the original process multiplied
by a power of the innovation variance. In the next section, we
shall exploit this interpretation to provide an alternative deriva-
tion of the expressions for the unconditional, prediction error,
and interpolation error variances of xt that result from setting
p = 1, 0,−1.
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3. PREDICTABILITY, INTERPOLABILITY, AND THE
VARIANCE PROFILE

It is evident from Equations (2) and (3) that, for p = 1, u1t =
xt and v1 = var(xt ).

When p = 0, Equation (2) gives u0t = ξt and, conse-
quently, var(u0t ) = σ 2. It follows that var(u0t ) 1

σ 2 = 1 and
limp→0{var(u0t ) 1

σ 2 }
1
p σ 2 = σ 2. Hence, we have proved that

lim
p→0

vp = σ 2. (4)

The left-hand side of Equation (4) is the geometric average of
the spectral density, limp→0 vp = exp{ 1

2π

∫ π
−π log 2πf (ω)dω}.

The right-hand side of Equation (4) is the variance of the in-
novation process in the Wold representation of xt , that is, the
one-step ahead prediction error variance var(xt |Ft−1) = E[xt −
E(xt |Ft−1)]2 = σ 2, where Ft = S{xs ; s ≤ t} is the sigma-
algebra generated by the random variables xs , s ≤ t . Hence,
we have proved that

σ 2 = exp

{
1

2π

∫ π

−π
log 2πf (ω)dω

}
,

the Szegö-Kolmogorov formula.
We now consider the case p = −1, which uses the con-

cept of inverse autocovariance, defined by Cleveland (1992)
in the frequency domain and then considered by Chatfield
(1979) in the time domain. When p = −1, u−1t = ψ(B−1)−1ξt

and 2πfu(ω) = σ 4

2π fi(ω) where fi(ω) = 1
f (ω) , satisfying γik =∫ π

−π e
ıωkfi(ω)dω, where γik is the inverse autocovariance func-

tion of xt and equivalently the autocovariance function of
the inverse process, u−1t . It follows that var(u−1t ) = σ 4

4π2 γı0,
where γi0 is the inverse variance of xt , and, consequently,
v−1 = 4π2

γi0
. We now show that v−1 = σ 4

var(u−1t )
is the interpo-

lation error variance of xt , var(xt |F\t ) = E[xt − E(xt |F\t )]2,

where F\t = S{xs ; s �= t} is the past and future information
set excluding the current xt . Let us denote by u∗

−1t = u−1t

σ 2

the inverse process u−1t divided by σ 2, so that fu∗(ω) =
f ∗
i (ω), where f ∗

i (ω) = 1
4π2 fi(ω). The key argument of the

proof is based on the fact that the stationary process u∗
−1t ,

with autocovariance function γ ∗
ik = ∫ π

−π e
ıωkf ∗

i (ω)dω and cor-
responding autocorrelation ρ∗

ik can be represented, by Equa-
tion (2), as u∗

−1t = 1
σ 2ψ(B−1)−1ψ(B)−1xt . In fact, �∗

i (B) =
[σ 2ψ(B−1)ψ(B)]−1 is the autocovariance generating function
of upt and therefore we can write u∗

−1t = ∑∞
k=−∞ γ

∗
ikxt−k,

from which
u∗

−1t

γ ∗
i0

= xt +
∑∞

k=1 ρ
∗
ik(xt−k + xt+k). Given that,

E(xt |F\t ) = −∑∞
k=1 ρ

∗
ik(xt−k + xt+k) (see Masani 1960; Salehi

1979; and Battaglia and Bhansali 1987), it follows that u∗
−1t =

γ ∗
i0[xt − E(xt |F\t )]. Turning to the original coordinate system,

based on u−1t and γi0, and taking the variance one obtains

v−1 = var(xt |F\t ) = 4π2

γı0
.

The comparison of the values of vp for p = −1, 0, 1 has
given rise two important measures of predictability and interpo-
lability. Nelson (1976) proposed P = 1 − var(xt |Ft−1)

var(xt )
= 1 − v0

v1

as a measure of relative predictability, taking values in the range
(0, 1). The above measure can be interpreted as a coefficient of
determination, that is, as the proportion of the variance of xt
that can be predicted from knowledge of its past realization. In

the signal processing literature, 1 − P is a measure of spectral
flatness, taking value 1 for a white noise process. As for inter-
polability, Battaglia and Bhansali (1987) defined the index of
linear determinism:A = 1 − var(xt |F\t )

var(xt )
= 1 − v−1

v1
.The quantity

A− 1 measures the proportion of the variance that cannot be
explained from knowledge of the past and the future realizations
of the process.

4. THE VARIANCE PROFILE OF AR, MA, AND LONG
MEMORY PROCESSES

We illustrate the characterization of certain classes of sta-
tionary processes via the variance profile. We shall consider the
class of ARFIMA(r, d, q) models φr (B)(1 − B)dxt = θq(B)ξt ,
ξt ∼ WN(0, σ 2), where φr (B) and θq(B) are polynomials of or-
der r and q, respectively, with roots lying outside the unit circle,
and −1 < d < 0.5. When d = 0, the process is ARMA(r, q),
when r = q = 0 and −1 < d < 0.5, the process is fractional
noise. The variance profile is

vp = σ 2

{
1

2π

∫ π

−π
|1 − e−ıω|−2pd |θq(e−ıω)|2p

|φr (e−ıω)|2p dω

} 1
p

= σ 2

⎛
⎝ ∞∑
j=0

ϕ2
j

⎞
⎠

1
p

, (5)

where the ϕj are obtained recursively from the Wold coeffi-
cients, as discussed in Section 2.

4.1 Variance Profile for AR and MA Processes

In the case of first-order processes, vp can be derived di-
rectly by applying the binomial theorem. Consider, for in-
stance, the MA(1) process xt = (1 − θB)ξt , ξt ∼ WN(0, σ 2),
for which we define the associated power transformed pro-
cess upt = (1 − θB)pξt = ∑∞

k=0( pk ) (−θB)kξt , where ( pk ) =
p(p−1)(p−2)···(p−k+1)

k(k−1)(k−2)···1 and the invertibility condition |θ | < 1 is re-
quired for the binomial expansion to be absolutely convergent
in the case of a real exponent; if p is a positive integer, the
summation terminates at p. The variance profile is

vp =
{ ∞∑
k=0

(
p

k

)2

θ2k

} 1
p

σ 2.

For the stationary AR(1) process, (1 − φB)xt = ξt , ξt ∼
WN(0, σ 2), with |φ| < 1, the associated power trans-
formed process is upt = (1 − φB)−pξt = ∑∞

k=0( −p
k )

(−φB)kξt = ∑∞
k=0( p + k − 1

k )(φB)kξt , where we have ap-
plied the basic identity ( pk ) = (−1)k( −p + k − 1

k ) (see Graham,
Knuth, and Patashnik 1994, p. 164). The variance profile is
then given by

vp =
{ ∞∑
k=0

(
p + k − 1

k2

)
φ2k

} 1
p

σ 2.

For AR(1) and MA(1) processes, the variance profile does
not depend on the sign of the parameter φ or θ and tends to a
horizontal straight line when |φ|, |θ | → 0, that is, in the white
noise case. On the other hand, for absolute values of φ and θ
increasing toward unity, the curves described by vp for an AR
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Figure 1. Variance profiles for MA(1) and AR(1) processes with unit prediction error variance. The online version of this figure is in color.

and a MA process become different. Specifically, the plot of
vp for MA(1) processes has an inflection point at p = 0, where
the variance profile curve changes its concavity. This does not
happen to the variance profile graph of an AR(1) process that
shows the same concavity for all the values of p ∈ [−1, 1].
Figure 1 evidences the difference between the variance profile
of an autoregressive and a moving average process.

The discrimination of an AR(1) process from an MA(1)
one as a model for the disturbance term of a linear regression
model has been an issue investigated since the seminal article by
Nicholls, Pagan, and Terrell (1975; see King and McAleer 1987;
Burke, Godfrey, and Tremayne 1990; Silvapulle and King 1991;
Baltagi 2005, chap. 5 for further references). The variance pro-
file can shed light on the issue. Defining zp = p[ln vp − ln v0],
the differences z−p−zp

2p = ln v0 − 1
2 (ln vp + ln v−p), are zero for

a white noise process, greater than zero for an AR(1) process,
and negative for an MA(1) process.

4.2 Cycle Models

A popular cyclical model is the circular model proposed by
Harvey (1989) and West and Harrison (1989, 1997; see also
Luati and Proietti 2010), which is an ARMA(2,1) process with
complex conjugates AR roots, and pseudo-cyclical behavior.
In the sequel, we shall refer to the representation provided by
Haywood and Tunnicliffe-Wilson (2000):

(1 − 2ρ cos�B + ρ2B2)xt =
√
G

2
(1 + B)κt

+
√
H

2
(1 − B)κ∗

t (6)

where� ∈ [0, π ] is the cycle frequency, ρ is a damping factor,
taking values in (0, 1), κt and κ∗

t are two uncorrelated white
noise disturbances with variance σ 2

κ , and G = sin2(�2 )(1 +
ρ)2+ cos2(�2 )(1 − ρ)2,H = sin2(�2 )(1 − ρ)2 + cos2(�2 )(1 +
ρ)2, When � = 0, xt is the AR(1) process (1 − ρB)xt = ξt ∼

WN(0, σ 2
κ ); when � = π , (1 + ρB)xt = ξt . Finally, for � =

π/2, (1 + ρ2B2)xt =
√

1 + ρ2ξt . By integrating the Fourier
transform of both sides of Equation (6), we obtain var(xt ) =
σ 2
κ

1−ρ2 independently of the cycle frequency. Thus, the cycle mod-
els that differ only for the cycle frequency are characterized by
the same variance; however, the prediction error variance and the
other vp values,p �= 1,will vary with� . Figure 2 illustrates this
fact with reference to the case when ρ = 0.8 and σ 2

κ = 1 − ρ2,
so that var(xt ) = 1. The variance profiles, obtained by Equation
(5) with l = 2, d = 0, q = 1, have an inflection point at p = 1
and for p → ∞ converge to the maximum of the spectrum.

A seasonal component is modeled by summing trigonometric
cycles defined at the fundamental frequency and at the harmonic
frequencies using the same scale parameter σ 2

κ and the same ρ
(e.g., ρ → 1 in nonstationary seasonal models; see Hannan,
Terrell, and Tuckwell 1970; Harvey 1989). In this case, the
individual cycles will be characterized by different predictability
and interpolability; moreover, the maximum of the spectrum
also varies.

To obtain cycle processes defined at different frequencies
� , but characterized by the same vp, ρ and σ 2 have to vary
according to the expression dρ

ρ
= − 1

2 (1 − ρ2) dσ 2
κ

σ 2
κ

. For instance,
the process (1 + 0.912B2)xt = (1 + 0.912)0.5κt has the same vp
as (1 ± 0.8)xt = κt .

4.3 Variance Profile for Long Memory Processes

Let us consider the fractionally integrated noise (FN)
process xt = (1 − B)−dξt , ξt ∼ WN(0, σ 2), which is station-
ary for d < 1/2 and invertible for d > −1 (see Palma
2007, Theorem 3.4 and Remark 3.1). In this range, xt has
Wold representation xt = ∑∞

j=0
�(j+d)

�(j+1)�(d)ξt−j , autocovariance

function γ (h) = σ 2 �(1−2d)
�(1−d)�(d)

�(h+d)
�(1+h−d) , and spectrum f (ω) =

(2π )−1σ 2[2 sin(ω/2)]−2d .
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Figure 2. Variance profiles for cyclical models with ρ = 0.8 and σ 2
κ = (1 − ρ2). The online version of this figure is in color.

The variance profile is

vp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
�(1 − 2pd)

�2(1 − pd)

]1/p

σ 2, dp < 0.5

∞ dp ≥ 0.5, d, p > 0,

0 dp ≥ 0.5, d, p < 0.

(7)

When d ≤ −0.5 and p = −1, we obtain the result discussed
in Walden (1994), which specializes Grenander and Rosenblatt
(1957, p. 84), that is, the interpolation error variance of a non-
invertible FN process is zero. For instance, if d = −1 then xt =

ξt − ξt−1. It follows immediately that xt = ∑∞
j=1(xt+j − xt−j ),

so that xt can be perfectly interpolated from the infinite past and
future. In this case, analogous to the case of a deterministic pro-
cess that occurs when

∫ π
−π log 2πf (ω)dω = −∞, the integral

of [2πf (ω)]−1 does not exist.
Figure 3 displays the variance profiles for a FN process with

varying d values. For d ∈ (−0.5, 0.5) and p ∈ (−1, 1), vp exists
and it is different from zero. It ought to be noticed that for
negative values of d the variance profile is negatively convex,
whereas for d > 0 the convexity is positive. When d > 0, the
distinctive feature of the variance profile, as compared to a

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

1.2
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d=−0.1

d=0.0

p

d≤0

−1.0 −0.5 0.0 0.5 1.0

1.0
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1.4

1.6

1.8

2.0 d=0.4

d=0.0

d=0.1

d=0.2

d=0.3

d≥0

Figure 3. Variance profiles for fractional noise process with memory parameter d. The online version of this figure is in color.
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short memory process with high persistence (e.g., an AR(1)
with φ = 0.9), is that vp → ∞ as p → (2d)−1, whereas for the
latter it converges to the finite maximum of the spectral density.

5. ESTIMATION OF THE VARIANCE PROFILE

The simplest nonparametric estimator of the variance profile
is based on the following bias corrected power mean of the
periodogram:

v̂p =
⎧⎨
⎩ 1

N

N∑
j=1

(2πI (ωj ))
p (�(p + 1))−1

⎫⎬
⎭

1
p

, (8)

where N = [(n− 1)/2], [·] denotes the integer part of the
argument, and

I (ωj ) = 1

2πn

∣∣∣∣∣
n∑
t=1

xte
−ıωj t

∣∣∣∣∣
2

is the periodogram, evaluated at the Fourier frequencies ωj =
2πj
n

∈ (0, π ),1 < j < [n/2].Notice that, for simplicity of expo-
sition, we have ruled out from estimation the frequencies 0 and
π . The latter can be included without substantially modifying
the estimator (see the discussion by Hannan and Nicholls 1977).

The factor (�(p + 1))−
1
p serves as a bias correction term,

which we shall discuss in details later in this section. The
price to be paid by correcting for the bias is that the asymp-
totic distribution of Equation (8) exists, and it is normal, only
for p > − 1

2 , which obviously excludes the relevant case of
p = −1, when vp gives the interpolation error variance. The
reason is that the random variables (2πI (ωj ))p, used to estimate
(2πf (ωj ))p, are distributed as independent Weibull (when p is
positive) or Fréchet (p negative) random variables with param-
eters α = 1

p
, β = (2πf (ωj ))p, α, β > 0, and the first two mo-

ments of the latter are finite only forp > − 1
2 (see the Appendix).

This essentially follows from the properties of the periodogram
that, in large samples, is equal to a scaled chi-square random
variable (Koopmans 1974, chap. 8),

I (ωj ) =
{

1
2f (ωj )χ2

2 , 0 < ωj < π

f (ωj )χ2
1 , ωj = 0, π,

(9)

where χ2
m denotes a chi-square random variable with m degrees

of freedom.
The case when p → 0 corresponds to the Davis and Jones

(1968) estimator for the prediction error variance

σ̂ 2 = exp

⎡
⎣ 1

N

N∑
j=1

log 2πI (ωj ) + γ

⎤
⎦ , (10)

where the log-additive bias correction term γ is the Euler
gamma, that is, minus the expectation of a log chi-square ran-
dom variable. The authors showed that log σ̂ 2 is asymptotically
normal,

log σ̂ 2 ∼ N

(
log σ 2,

2π2

6n

)
,

and recommended using a log-normal distribution for σ̂ 2 when
n is not too large.

Hannan and Nicholls (1977) proposed replacing the raw pe-
riodogram ordinates by the nonoverlapping averages of m con-
secutive ordinates,

σ̂ 2(m) = m exp

⎡
⎣ 1

M

M−1∑
j=0

log

{
1

m

m∑
k=1

2πI (ωjm+k)

}
−ψ(m)

⎤
⎦ ,
(11)

whereM = [(n− 1)/(2m)] and ψ(m) is the digamma function.
The estimator in Equation (10) is obtained in the case m =
1. The large sample distributions of Equation (11) and its log
transform are, respectively,

σ̂ 2(m) ∼ N

(
σ 2,

2σ 4mψ ′(m)

n

)
,

log σ̂ 2(m) ∼ N

(
log σ 2,

2mψ ′(m)

n

)
and the estimator results in a smaller mean square estimation
error; increasing m reduces the variance but inflates the finite
sample bias.

This suggests the following estimator, that for m > 1 can be
computed for any p > −m

2 , thereby overcoming the drawback
of the estimator in Equation (8),

v̂p(m) = m

⎡
⎣ 1

M

M−1∑
j=0

(
1

m

m∑
k=1

2πI (ωjm+k)

)p
�(m)

�(m+ p)

⎤
⎦

1
p

.

(12)

The multiplicative bias correction term is determined based on
the properties of a power transform of a gamma random variable
(Johnson and Kotz 1972; see also the Appendix) and on its
scaling properties. Note that, if p → 0, then

lim
p→0

(
�(m+ p)

�(m)

) 1
p

= exp

{
−
m−1∑
k=1

1

k
+ γ

}
= exp{−ψ(m)}

(13)

and the estimator in Equation (12) tends to that in Equation (11)
(to Equation (10) when further m = 1).

The asymptotic properties of the estimator in Equation (12)
along with the relations with estimators in Equations (10) and
(11) are stated in the following theorem.

Theorem 1. Let xt be generated by a stationary Gaussian pro-
cess with absolutely continuous spectral density function f (ω),
whose powers f (ω)p are integrable and uniformly bounded.
Then, for p > −m

2 ,

(1) v̂p(m) is consistent for vp,
(2)

√
n{v̂p(m) − vp} →d N(0,Vp), where Vp = 2m( vp

p
)2

( v2p

vp
)2p(�(m+2p)�(m)

�2(m+p) − 1), and

(3) v̂0(m) = σ̂ 2(m) and V0 = 2mσ 4ψ ′(m).

The proof, provided in the Appendix, is based on the prop-
erties of power transforms of basic gamma random variables
(Johnson and Kotz 1972) and uses a central limit theorem for lin-
ear combinations of independent and identically distributed ran-
dom variables by Gleser (1965), which relates to Eicker (1963)
and Gnedenko and Kolmogorov (1954) and essentially estab-
lishes a Lindeberg-Feller type condition that is easy to check.
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The third statement of the theorem deals with case when
p → 0, when the asymptotic variance of the variance profile
estimator is equal to the asymptotic variance of the prediction
error variance estimator in Equation (11). Indeed, the Appendix
provides, as a side product, an alternative proof of the asymptotic
normality of the Hannan and Nicholls (1977) estimator, which
was based on the asymptotic equivalence of moments.

In principle, to estimate vp for p → −∞, the condition p >
−m

2 requiresm → ∞. As we shall see in the following section,
where the sampling properties of v̂p(m) will be assessed, a
reliable estimation of vp using a large value of m requires a very
large sample. In many cases, however, being f (ω) > 0 and vp
nonnegative and increasing, it happens that vp tends to zero for
values of p > −m

2 , withm � ∞; see for example Figures 1–3,
where the variance profile tends to zero for values of p that are
close to −1.

5.1 The Sampling Properties of v̂p(m)

The mean square error (MSE) of v̂p(m) is a rather complicated
function of p, m, and the spectral properties of xt . While analyt-
ical formulas are difficult to obtain, the jackknife (Quenouille
1949; see Miller 1974; Efron and Tibshirani 1993, for reviews)
provides an effective estimator that can serve the purpose of
selecting the bandwidth parameter m, as it will be illustrated
shortly.

The complexity of the dependence of the MSE is illus-
trated by Figure 4, which displays the logarithm of the MSE
of the prediction error variance estimator v̂0(m), when xt is
an AR(1) process with parameter φ = 0.8, as a function of
the sample size n and the bandwidth m. Similar “concertina”
shapes are observed for different values of p �= 1, the jumps
occurring at the points of discontinuity of M = [(n− 1)/2m].
When p = 1, the estimator is centered around the Rieman-
nian approximation of v1, (mM)−1 ∑

j

∑
k 2πf (ωjm+k), with

var(v̂p(1)) ≈ (mM)−1[(mM)−1 ∑
j

∑
k(2πf (ωjm+k))2], where

the factor in parenthesis converges to v2
2; hence, for a fixed sam-

ple size, apart from minor effects that make mM deviate from
[(n− 1)/2], the MSE is independent of m.

The fact that the MSE has multiple minima makes the se-
lection of the optimal bandwidth hard. In practice, the variance
and the component of the bias that depends on m can be esti-
mated using the jackknife method. The jackknife estimate of the
variance is

V̂p(m) = n∗ − 1

n∗

n∗∑
r=1

(
v̂p,r (m) − v̂p,·(m)

)2
, v̂p,·(m)

= 1

n∗
∑
r

v̂p,r (m),

where v̂p,r (m) is the variance profile estimator in Equation
(12) when the periodogram ordinate I (ωr ) is omitted, r =
1, . . . , n∗ = [(n− 1)/2]; the above estimate is valid under the
assumption that the periodogram ordinates are independent (see
Equation 9). Also, writing the bias, B[v̂p(m)] = E[v̂p(m)] − vp,

as

B[v̂p(m)] = E[v̂p(m) − v̂p(1)] + E[v̂p(1)] − vp

= E[v̂p(m) − v̂p(1)] + B[v̂p(1)], (14)

it can be seen that the bias depends on m solely via the first term,
which can be estimated from averaging out the leave-one-out
cross-validatory differences v̂p,r (m) − v̂p,r (1). The second term
is the bias of the raw estimator in Equation (8) and depends (for
n fixed) on p and f (ω).

We ran a Monte Carlo experiment consisting of 1000 replica-
tions of an AR(1) process with parameters φ = 0.8, σ 2 = 1, of
length n = 90, 200, 500. The case n = 90 is used for compari-
son with the simulation results by Hannan and Nicholls (1977).
For each replication, we estimate the prediction error variance
by v̂0(m),m = 1, . . . , 12, and evaluate the jackknife estimate of
the variance and the bias term E[v̂0(m) − v̂0(1)]. The output of
the experiment is the Monte Carlo (MC) estimate of the MSE,

Figure 4. Logarithm of the MSE of the prediction error variance estimator v̂0(m) for n = 80, . . . , 250 and m = 1, . . . , 20. The MSE is
estimated by Monte Carlo simulation using 5000 replications.
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Figure 5. Plot of MSE, variance and bias of v̂0(m) as a function of m for series of length n = 90, 200, 500. The online version of this figure
is in color.

variance, and bias of the estimator; moreover, we can average
across the 1000 replications the jackknife estimates of bias and
variance to assess their reliability.

Figure 5 displays and compares the MC and the jackknife es-
timates of the MSE, variance, and bias. Each row corresponds to
a different sample size. The plots confirm that the bias increases
with m and decreases with n. The variance decreases with m,
but with discontinuities that occur at the points of discontinuity
of ψ ′(m)/M . The jackknife estimates are upward biased for m
small. The jackknife method provides a very accurate estimate
of the bias, as it can be seen from the right plots. Although it
estimates only the first term of Equation (14), it can be shown
that for p around 0 the contribution of the term B[v̂p(1)] to the
overall bias is small.

The overall conclusion is that for values of p for which
B[v̂p(1)] is negligible, the MSE estimated by the jackknife
method can provide reliable guidance over the selection of m.
For instance, for n = 90 the choice m = 4 is suitable, whereas
for n = 500, m = 13 appears to be the best choice.

5.2 Estimation of the Long Memory Parameter Based
on the Variance Profile

A minimum distance estimator (MDE) of the long mem-
ory parameter d of a fractionally integrated process based on
the variance profile can be constructed as the minimizer of a
weighted distance between the sample and the theoretical vari-
ance profile in Equation (7):

d̂ = min
d∈D

∫ b

a

kp(v̂p(m) − vp)2dp, (15)

where D and (a, b) are such that −1 < d < 0.5 and dp < 0.5.
The weights kp may be uniform or inversely related to the
asymptotic variance Vp, in which case it should be noticed
that for a FN process Vp exists provided that pd < 0.25, since
Vp requires the existence of v2p. If the range of integration
(a, b) excludes all the points pd < 0.25 (e.g., b < 0.625 for
d = 0.4), the minimum distance estimator d̂ is consistent for d
and

√
n{d̂ − d} →d N(0,Vd ), where

Vd =
∫ b
a

∫ b
a
vpvs [ψ(1−pd)−ψ(1−2pd)][ψ(1−sd)−ψ(1−2sd)]kpksγpsdpds{∫ b

a
v2
p[ψ(1−pd)−ψ(1−2pd)]2kpdp

}2

and γps is the covariance between v̂p(m) and v̂s(m), as can
be shown using the same arguments of Tieslau, Schmidt, and
Baillie (1996), who derived a minimum distance estimator for
d based on the sample and population autocorrelation function.
In general, Vd ≥ 6

π2 , the variance of the maximum likelihood
(ML) estimator of d, which does not depend on d. On the other
hand, for fixed m, Vd depends on d and also on p. It follows
that for any d it is possible to choose a range of p where Vd is
as close as possible to the asymptotic lower bound implied by
Fisher information for d.

The estimator lends itself quite naturally to the interpretation
as a feature matching estimator (see Xia and Tong 2011), in
that in estimating d the focus is not in fitting a specific feature
such as the prediction error variance (which would amount to
optimizing the one-step ahead predictive performance of the
fitted model), but in matching the sample and the population
variance profile across a range of values of p that encompasses
the prediction error variance, the interpolation error variance,
and other process characteristics defined at different values of
p (the power means of the spectral density).
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A Monte Carlo experiment using 5000 replications from a
FN process with long memory parameter d = 0.4 and σ 2 = 1
has been performed to assess the properties of the proposed
estimator. In practice, we set kp = 1 for all p, and we evaluate
both Equations (7) and (12) on a regular grid of 100 values of p
from a > −m/2 to b. The experiment also aims at establishing
the optimal values of a and b.

For assessing the sampling properties of the estimator we
report the bias, standard error, and the mean square error and
for a comparative assessment we report the same quantities
for the widely applied Geweke and Porter-Hudak (1983, G-PH
henceforth) estimator

d̃ =
∑R

j=1

[
ln I (ωj )(wj − w̄)

]
∑R

j=1(wj − w̄)2
,

based on the least squares regression of ln I (ωj ) on a con-
stant and wj = −2 ln(2 sin(ωj/2)), j = 1, . . . , R, where w̄ =
R−1 ∑R

j=1wj . We include in the comparison the generalized
linear regression (GLR) estimator proposed by Beran (1993),
such that ln I (ωj ) is regressed on a constant and wj and the
errors have a log-gamma distribution. Estimation is carried out
by iteratively weighted least squares (see Cameron and Turner
1987). The GLR estimator is more accurate than G-PH as it em-
bodies the correct distributional assumption on the nature of the
disturbances. In fact, it is equivalent to Whittle’s approximate
maximum likelihood estimator and behaves in large samples
as the exact maximum likelihood estimator (see Palma 2007,
sec. 4.4).

5.2.1 Simulation Results. The results of the simulation ex-
periment, reported in Table 1, indicate that the MDE estimator
outperforms G-PH and can be made as efficient as the GLR esti-
mator by a suitable choice of the interval (a, b). As m increases,
further reductions in the MSE are available, as the variance of
the estimator reduces and the bias is kept under control by vary-
ing (a, b), until the estimator in Equation (12) degenerates to a

constant with respect to p and in Equation (15) estimates d equal
to zero with zero variance and bias d2 (for n = 500, this occurs
for m = 125, in which case M = [499/250] = 1). The size of
this interval increases with m. The lower extreme a decreases
at a much slower rate than −m/2 and b increases very slowly.
Also, as n increases from 500 to 1000, the length of the optimal
interval reduces for a given m. On the contrary, if (a, b) is held
fixed and m varies, the usual trade-off between bias and variance
will be in operation. For n = 1000, the choice (−2.2, 0.6) seems
suitable, whereas for n = 500 one would consider (−2.7, 0.6).
Values outside this interval are discarded as the estimation er-
ror of vp is larger. Interestingly, the upper integration limit b is
smaller than 1: obviously, for a positive d, b needs to be smaller
than 0.5/d, which is the asymptote of vp for a FN process.
Similar considerations apply to other values of d and different
sample sizes.

In conclusion, the proposed MDE estimator can be made
as efficient as the maximum likelihood estimator based on the
distributional result in Equation (9). Moreover, it does not suffer
from the limitation affecting the minimum distance estimators
based on the autocorrelations and the partial autocorrelations,
that require d < 0.25.

6. EMPIRICAL ILLUSTRATIONS

6.1 Mount Campito Tree Rings Data

The Mount Campito data is a popular time series consist-
ing of 5405 annual values of bristlecone pine tree ring widths,
spanning the period from the year 3426 BC to 1969 AD. The
series is plotted in the upper left panel of Figure 6; the sample
autocorrelations are persistently positive and decay very slowly
(see upper right panel).

The estimated variance profile is that of a long mem-
ory process with high d. It is displayed in the bottom left
panel along with the 95% interval estimates, computed as

v̂p(m) ± 1.96
√

V̂p/n usingm = 20. The value of the bandwidth

Table 1. Estimation of d: bias, standard error, and MSE of the MDE estimator for different values of m, and G-PH and GLR estimators, based
on 5000 replications of a FN process with d = 0.4. For the MDE, estimator a and b are the extremes of integration of the estimator in

Equation (15)

n = 500 n = 1000

Estimator a b Bias Std. err. MSE a b Bias Std. err. MSE

MDE m = 1 −0.4 0.6 −0.06539 0.06743 0.00882 −0.4 0.6 −0.04138 0.04206 0.00348
MDE m = 3 −0.4 0.2 −0.02691 0.05539 0.00379 −0.4 0.4 −0.02957 0.03132 0.00186
MDE m = 5 −0.4 0.3 −0.03975 0.04287 0.00342 −0.4 0.2 −0.02116 0.03227 0.00149
MDE m = 10 −0.6 0.2 −0.02826 0.04330 0.00267 −0.5 0.2 −0.01685 0.02951 0.00115
MDE m = 15 −0.8 0.2 −0.02256 0.04306 0.00236 −0.6 0.2 −0.01427 0.02918 0.00105
MDE m = 20 −1.0 0.3 −0.01947 0.04303 0.00223 −0.7 0.2 −0.00844 0.02979 0.00096
MDE m = 25 −1.8 0.5 −0.01548 0.04237 0.00203 −1.1 0.4 −0.00825 0.02910 0.00092
MDE m = 30 −1.9 0.5 −0.01674 0.04142 0.00200 −1.6 0.5 −0.00855 0.02838 0.00088
MDE m = 40 −2.8 0.6 −0.01482 0.04039 0.00185 −2.3 0.6 −0.00805 0.02761 0.00083
MDE m = 50 −3.4 0.7 −0.01135 0.03775 0.00155 −2.0 0.6 −0.00244 0.02779 0.00078

G-PH,R = [n/16] 0.00711 0.13732 0.01891 0.00533 0.09472 0.00900
G-PH,R = [n/8] 0.00600 0.09117 0.00835 0.00381 0.06707 0.00451
G-PH,R = [n/4] 0.00572 0.06237 0.00392 0.00278 0.04574 0.00210
G-PH,R = n 0.00329 0.04725 0.00224 0.00202 0.03391 0.00115
GLR 0.00159 0.03749 0.00141 0.00107 0.02694 0.00073
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Figure 6. Mount Campito tree rings data: series (top left panel); sample autocorrelation function (top right), estimate of the variance profile
using m = 20 (bottom left) and estimation criterion (15), where the variance profile is evaluated at an equally spaced grid of 100 values in the
range (−2.0, 0.6). The online version of this figure is in color.

parameter was chosen as the minimizer of the MSE estimated
by the jackknife method, for p in the range (–0.5, 0.5). The
long memory parameter is estimated equal to 0.453, a value in
accordance with the literature (see, e.g., Baillie 1996, p. 45),
where the ML estimate of d is 0.449. The estimation criterion
function is plotted in the last panel.

6.2 Power Transformation of Absolute Returns

Let rt denote an asset return. Ding, Granger, and Engle (1993)
addressed the issue of determining the value of the Box and
Cox (1964) power transformation parameter, λ, for which the
autocorrelation property of the transformed series xt (λ) = |rt |λ
is strongest. Focusing on the Standard & Poor stock market daily
closing price index over the period January 3, 1928–August 30,
1991, they argued that the long memory property is strongest
when λ = 1.

The analysis of two time series of returns according to the
variance profile provides a broad confirmation of these findings.
We focus on the daily returns computed on the Nasdaq and Stan-
dard & Poor stock market daily closing price index, available for
the sample period January 3, 1989–March 7, 2011 (n = 10110).
As we may record zero returns, we adopt the shifted-mean power
transformation (see Atkinson 1985) xt (λ) = (|rt | + c)λ, where
c = 0.001 (the choice of c turns out to be unimportant). An issue
arises as to whether the normalized Box-Cox transform or the
standardized one should be considered. The former is obtained
by dividing xt (λ) by n

√
J , where J = ∏

t | ∂xt (λ)
∂xt

| is the Jacobian
of the transformation (Atkinson 1985). We prefer the second
solution, as we would like to determine the transformation for

which the series has the smallest normalized variance profile for
p < 1. In other words, we will constraint v1 = 1 for all the λ
values. Settingm = 17, we estimate the variance profile for the
standardized transformed series for values of λ in the interval
(−0.5, 2.3). The results for the SP500 series are presented in
Figure 8.

The variance profile of the standardized xt (λ) can be used to
determine the value of the transformation parameter for which
the long memory property is strongest. Figure 7 plots the value
of d, estimated according to Section 5, against λ. It turns out
that for both series the maximum d is achieved for λ around
1.25. The MLE shows a similar pattern. However, the variance
profile does not differ significantly for that associated to λ = 1,
which does not contradict Ding, Granger, and Engle (1993).

This fact is illustrated by Figure 8, which refers to the SP500
series, displayed in the top right panel. The plot also shows
that the normalized variance profile is a minimum for λ in the
vicinity of 1.25. The last display shows the interval estimates
of vp for λ = 1, 1.25, and 2. It can be seen that the variance
profile for the absolute returns does not differ from that for
λ = 1.25, whereas the squared returns (λ = 2) differ signifi-
cantly. The implication is that the squared returns are less pre-
dictable and interpolable than absolute returns. Another conclu-
sion is that the volatility of Nasdaq returns is more predictable
than SP500s.

6.3 The Great Moderation

The term Great Moderation (GM) refers to a substantive
reduction in the volatility of macroeconomic fluctuations that
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Figure 7. Nasdaq and SP500 daily absolute returns: estimates of the long memory parameter d based on the variance profile as a function of
the transformation parameter λ. The online version of this figure is in color.

took place around the mid-1980s up to the inception of the last
recession (around 2008; see, among others, McConnell and
Perez-Quiros 2000). The causes of this well-documented
phenomenon have been the matter of an interesting debate,
with two alternative explanations being considered: a reduction
in the size of economic shocks (which could be measured by
the one-step ahead prediction error variance), and the change in
the transmission mechanism by which shocks are propagated

(which is measured by the change in the coefficients of the
Wold representation).

The variance profile can provide further insight on this issue.
We focus on the U.S. monthly index of industrial production,
made available by the Federal Reserve Board, both in season-
ally adjusted and unadjusted forms. We set off analyzing the
series of yearly growth rates for the period January 1949–June
2008, which is split into two subseries, the first covering the

Figure 8. Standard and Poor 500 daily absolute returns (standardized): variance profile as a function of the Box-Cox transformation parameter:
series (top left panel); sample autocorrelation function (top right), estimate of the variance profile usingm = 17 (bottom left) and comparison of
the interval estimates for λ = 1, 1.25 and λ = 2. The online version of this figure is in color.
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Figure 9. U.S. Index of industrial production, yearly (seasonally unadjusted) and monthly growth rates (seasonally adjusted) for the two
subperiods 1949.1–1983.12 (pre) and 1984.1–2008.6 (Great Moderation). Comparison of autocorrelation functions and variance profiles. The
online version of this figure is in color.

period predating the GM (January 1949–December 1983) and
the second covering the GM period (January 1984–June 2008).
The series are plotted in Figure 9; the volatility reduction is
indeed visible and the patterns of the autocorrelations are also
different—the behavior is less cyclical in the GM period.

The estimated variance profile (using m = 7) for the two
subperiods reveals that both the variance and the prediction
error variance are significantly reduced in the GM period. For
p → −1, v̂p gets very close to zero for both subseries. This is
a likely consequence of the fact that seasonality in the original
series is very stable, so that the yearly growth rates are likely
to be noninvertible at the seasonal frequencies as a result of the
application of the filter (1 − B12).

When we come to the monthly growth rates (computed
on the seasonally adjusted series; see the bottom panel of
Figure 9), we also find a significant change in the variance
profile, which flattens down to an almost horizontal pattern. It
should be noticed, however, that even though the GM is associ-
ated to a significant drop in the prediction error variance (v0),
the relative predictability, 1 − v0/v1, decreased, as well as the
interpolability, as measured by the index of linear determinism
1 − v−1/v1.

7. CONCLUSIONS

The variance profile, vp, provides a characterization of a
stochastic process that is useful for feature assessment and fea-
ture matching. The article has focused on the derivation of a
minimum distance estimator of the long memory parameter.
Another application along this direction is time series discrimi-
nation and clustering: our preliminary experience (not reported
for brevity) on the discrimination of AR and MA processes sug-
gests that focusing on the distance between the variance profiles
provides a very effective strategy (more effective than using the
distance between the autocorrelation functions in the MA vs.
AR case).

In feature assessment/matching, it is important to consider
p as a continuous parameter; restricting attention only to few
selected values, namely p = 0,±1, results in a much poorer
feature assessment/matching. From the theoretical standpoint,
considering the variance profile as a continuous function of p
enables the direct derivation of fundamental time series results.

Also, having a nonparametric estimator that is a continu-
ous function of p, as it is based on the power transformation
of the pooled periodogram, is relevant for the estimation of
ratios or contrasts based on different values of vp (i.e., rela-
tive measures of predictability and interpolability). Other pos-
sible applications of the variance profile, or its transformation
zp = p(log vp − log v0), are in the field of goodness-of-fit tests.
Davis and Jones (1968) discussed the test of the nullH0 : z1 = 0
as a test for white noise; the test can be extended to other values
of p (e.g., H0 : log v1 − log v−1 = 0 and H0 : z−1 = 0 are also
tests of the white noise hypothesis) and a combination of such
tests across different values of p may prove more efficient. The
test of H0 : 2(log v2 − log v1) = 0, under which the sum of the
squared autocorrelation at all lags is 1, is related to the goodness-
of-fit test of Milhoj (1981; see also Beran 1992; Hong 1996).

We leave to future research the estimation of the variance pro-
file using tapered and multitapered periodograms (see Pukkila
and Nyquist 1985; Walden 1995, 2000; and, more recently,
Kohli and Pourahmadi 2012) and the comparison with alterna-
tive parametric estimators based on autoregressive model fitting,
as in Cleveland (1972) and Bhansali (1993). Finally, a multi-
variate generalization of the variance profile can be carried on
in the spirit of Mohanty and Pourahmadi (1999).

APPENDIX

We provide the proof of the consistency and asymptotic normality
of the estimator in Equation (12). We start from the case when p �= 0;
the case when p → 0 will be considered afterwards.
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For m odd, the quantity 1
m

∑m

k=1 2πI (ωjm+k) can be interpreted as
a Daniell type estimator for 2πf (ωjm+ m+1

2
). Hence, assuming M and

m large enough for asymptotics and m

M
small enough for f (ω) to be

constant over frequency intervals of length 2πm
M

, for fixed m, and for 1 ≤
k ≤ m,

∑m

k=1
I (ωjm+k )

1
2 f (ω

jm+ m+1
2

)
∼ χ 2

2m (see Koopmans 1974, pp. 269–270),

and therefore
∑m

k=1 2πI (ωjm+k) = 2πf (ωjm+ m+1
2

)Xj , where the Xj
are independent and identically distributed random variables Xj ∼
1
2χ

2
2m or equivalently, Xj ∼ G(m, 1), a basic gamma random variable

with shape parameter equal to m. Thus,(
m∑
k=1

2πI (ωjm+k)

)p

=
(

2πf
(
ωjm+ m+1

2

))p
X
p

j . (A.1)

By direct integration,

E
(
X
p

j

) = �(m+ p)

�(m)
, (A.2)

and by the usual formula for the variance of a random variable one
gets,

var
(
X
p

j

) = �(m+ 2p)

�(m)
− �2(m+ p)

�2(m)
, (A.3)

which exist for p > −m

2 . Hence, the random variable Zj defined as

Zj =
X
p

j − �(m+p)
�(m)√

�(m+2p)
�(m) − �2(m+p)

�2(m)

, (A.4)

has zero mean and unit variance.
Under the assumption of a uniformly bounded power of the spectral

density function and by approximating the integral with its Riemannian
sum,

1

2π

∫ π

−π
(2πf (ω))2p dω = lim

M→∞
1

M

M−1∑
j=0

(
2πf

(
ωjm+ m+1

2

))2p
(A.5)

the quantity QM = 1
M

∑M−1
j=0 (2πf (ωjm+ m+1

2
))2p exists and has a limit,

limM→∞QM = v
2p
2p .

Let now

bj =
(

2πf
(
ωjm+ m+1

2

))p
√

MQM

, (A.6)

which satisfies
∑M−1

j=0 b
2
j = 1. Moreover, since the pth power of the

spectral density function is uniformly bounded and since QM con-
verges to a positive term, we have that max0≤j≤M−1 |bj | → 0. Hence,
the assumptions for the central limit theorem for linear combinations
of sequences of random variables (Gleser 1965, Theorem 3.1, which
relates to Eicker 1963 and Gnedenko and Kolmogorov 1954) are sat-
isfied and

∑M−1
j=0 bjZj →d N(0, 1). It follows by Equation (A.4) and∑M−1

j=0 b
2
j = 1 that

M−1∑
j=0

bjX
p

j →d N

⎛
⎝M−1∑

j=0

bj
�(m+ p)

�(m)
,

(
�(m+ 2p)

�(m)
− �2(m+ p)

�2(m)

)⎞
⎠

and, as a function of our estimator, using Equation (A.6),

{v̂p(m)}p = 1

M

√
MQM

M−1∑
j=0

bjX
p

j

�(m)

�(m+ p)

→d N

⎛
⎝ 1

M

M−1∑
j=0

(
2πf

(
ωjm+ m+1

2

))p
,�M

⎞
⎠ (A.7)

where �M = 1
M
QM ( �(m+2p)

�(m) − �2(m+p)
�2(m)

)( �(m)
�(m+p) )2. By taking the limits

√
M

({v̂p(m)}p−vpp
) →d N

(
0, v2p

2p

(
�(m+ 2p)�(m)

�2(m+ p)
−1

))
(A.8)

and applying the delta method we finally get the asymptotic distribution
√
n(v̂p(m) − vp)

→d N

(
0, 2m

(
vp

p

)2 (
v2p

vp

)2p (
�(m+ 2p)�(m)

�2(m+ p)
− 1

))
. (A.9)

We now prove the consistency of v̂p(m) for vp , that is a consequence
of three facts: (1) the Chebychev weak law of large numbers, applied
to the sequence of random variables√

MQMbjXj
�(m)

�(m+ p)

in v̂p(m)p (see Equation A.7); (2) the convergence of the Riemannian
sum to the integral (see Equation A.5); and (3) the Slutsky theorem
for the probability limit, which allows us to state that, since v̂p(m)p is
consistent for vpp then v̂p(m) is a consistent estimator of vp , given that
the power function is continuous.

Let us now consider p → 0. In this case, the estimator in Equation
(12) equals the prediction error variance estimator in Equation (11); see
Equation (13); moreover, in this context, the case p → 0 correspond to
the case when the logarithm of Xj is taken, rather than its power, that
is when p → 0, Xp

j is to be read as logXj . Hence, E(exp{t logXj }),
given in Equation (A.2), is the moment generating function of logXj
and gives E(logXj ) = ψ(m) and var(logXj ) = ψ ′(m). Therefore,
when p → 0, Equation (A.1) becomes (some parentheses are omit-
ted for sake of notation) log

∑m

k=1 2πI (ωjm+k) = log 2πf (ωjm+ m+1
2

) +
logXj with E log(

∑m

k=1 2πI (ωjm+k)) = log 2πf (ωjm+ m+1
2

) + ψ(m)

and var log(
∑m

k=1 2πI (ωjm+k)) = ψ ′(m), respectively. What follows
is that in the limit case, the bias correction via a multiplication (by the
inverse expected value, see Equation A.7) becomes a subtraction and
the subtracted quantity does not modify the asymptotic variance of the
estimator of the quantity (E(Xp

j ))−2. Specifically, when p → 0 v̂p(m)p

takes the following form, log σ̂ 2(m) = 1
M

∑M−1
j=0 (log 2πf (ωjm+ m+1

2
) +

logXj − ψ(m)), that is, the sample means of M random variables
each one having expected value log 2πf (ωjm+ m+1

2
) and varianceψ ′(m).

Since the variables are uniformly integrable (as implied by assuming
that log f (ω) is uniformly bounded for all ω), the central limit the-
orem applies and, since 1

M

∑M−1
j=0 log f (ωjm+ m+1

2
),

√
M(log σ̂ 2(m) −

log σ 2) →d N(0, ψ ′(m)) and replacing M = (n− 1)/(2m) and by the
delta method,

√
n(σ̂ 2(m) − σ 2) →d N(0, 2mσ 4ψ ′(m)).

The case m = 1 is a particular case of Equation (12). However,
one could note that when m = 1, the estimator in Equation (12)

becomes v̂p = { 1
N

∑N

j=1[2πI (ωj )]p[�(p + 1)]−1} 1
p and the random

variables involved in its asymptotic distributions can be written as
monotonic transforms of χ 2

2 random variables, as Yj = [2πI (ωj )]p =
[πf (ωj )χ 2

2 ]p. It follows that for p �= 0, by applying the density trans-
form method, one gets

fYj (y)=
1

|p|
[2πf (ωj )]p

(
y

[2πf (ωj )]p

) 1
p−1

exp

{
−

(
y

[2πf (ωj )]p

) 1
p

}
.

When p is positive and finite, then fYj (y) is the density of a Weibull dis-
tribution with parameters (α, β) where α = 1

p
, β = [2πf (ωj )]p; on the

other hand, when p is negative, then Yj is distributed like a Fréchet ran-
dom variables with the same parameters. Note that whenp → 0 we find
the Gumbel distribution, that is, the distribution of the logarithm of an
exponential random variable that coincides with Davis and Jones (1968)
distribution of the log-periodogram. For p > − 1

2 , the expected value
and the variance of the Yj are given by E(Yj ) = [2πf (ωj )]p�(p + 1)
and var(Yj ) = [2πf (ωj )]2p[�(2p + 1) − �2(p + 1)], respectively.
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It follows that the random variables Zj = Yj�(p + 1)−1 have
mean and variance given by E(Zj ) = [2πf (ωj )]p and var(Zj ) =
[2πf (ωj )]2p[�(2p + 1)�−2(p + 1) − 1], respectively, and since they
are uniformly bounded, the Lindeberg-Feller central limit theorem
applies and we get Equations (A.8) and (A.9) with m = 1. Note that
for p > 0,we find the result of Corollary 1 in Taniguchi (1980), which
requires positivity of the exponent for existence of the inverse Laplace
transform upon which his estimator is based.

Finally, it is straightforward to verify that when p → 0 and m = 1,
we find the asymptotic distribution of the Davis and Jones (1968)
estimator for the prediction error variance.

[Received April 2011. Revised March 2012.]
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