In this paper Autoassociative Neural Networks (AANN) are used to implement Nonlinear Principal Component Analysis (NLPCA) for dimension reduction of hyperspectral data. The nonlinear components are then considered as inputs for a Multi-Layer Perceptron (MLP) network to perform pixel-based classification. The methodology has been applied considering the test area of Tor Vergata - Frascati, Italy, and the hyperspectral data provided by the CHRIS-PROBA mission. Comparative analysis with a similar procedure considering a more standard dimensionality reduction technique such as Principal Component Analysis (PCA) has been carried out

Licciardi, G., DEL FRATE, F., Duca, R. (2009). Feature reduction of hyperspectral data using autoassociative neural networks algorithms. In Proceedings of International Geoscience and Remote Sensing Symposium (pp.I-176-I-179). IEEE [10.1109/IGARSS.2009.5416882].

Feature reduction of hyperspectral data using autoassociative neural networks algorithms

DEL FRATE, FABIO;
2009-01-01

Abstract

In this paper Autoassociative Neural Networks (AANN) are used to implement Nonlinear Principal Component Analysis (NLPCA) for dimension reduction of hyperspectral data. The nonlinear components are then considered as inputs for a Multi-Layer Perceptron (MLP) network to perform pixel-based classification. The methodology has been applied considering the test area of Tor Vergata - Frascati, Italy, and the hyperspectral data provided by the CHRIS-PROBA mission. Comparative analysis with a similar procedure considering a more standard dimensionality reduction technique such as Principal Component Analysis (PCA) has been carried out
International Geoscience and Remote Sensing Symposium
Cape Town
2009
Rilevanza internazionale
2009
Settore ING-INF/02 - CAMPI ELETTROMAGNETICI
English
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5416882&refinements%3D4292423120%2C4274855203%2C4273419000%2C4274050869%26ranges%3D2009_2009_p_Publication_Year%26queryText%3DInternational+Geoscience+and+Remote+Sensing+Symposium
Intervento a convegno
Licciardi, G., DEL FRATE, F., Duca, R. (2009). Feature reduction of hyperspectral data using autoassociative neural networks algorithms. In Proceedings of International Geoscience and Remote Sensing Symposium (pp.I-176-I-179). IEEE [10.1109/IGARSS.2009.5416882].
Licciardi, G; DEL FRATE, F; Duca, R
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/100370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 18
social impact