Gait disturbances and akinesia are extremely disabling in advanced Parkinson's disease. It has been suggested that modulation of the activity of the pedunculopontine nucleus (PPN) may be beneficial in the treatment of these symptoms. We report the clinical affects of deep brain stimulation (DBS) in the PPN and subthalamic nucleus (STN). Six patients with unsatisfactory pharmacological control of axial signs such as gait and postural stability underwent bilateral implantation of DBS electrodes in the STN and PPN. Clinical effects were evaluated 2-6 months after surgery in the OFF- and ON-medication state, with both STN and PPN stimulation ON or OFF, or with only one target being stimulated. Bilateral PPN-DBS at 25 Hz in OFF-medication produced an immediate 45% amelioration of the motor Unified Parkinson's Disease Rating Scale (UPDRS) subscale score, followed by a decline to give a final improvement of 32% in the score after 3-6 months. In contrast, bilateral STN-DBS at 130-185 Hz led to about 54% improvement. PPN-DBS was particularly effective on gait and postural items. In ON-medication state, the association of STN and PPN-DBS provided a significant further improvement when compared to the specific benefit mediated by the activation of either single target. Moreover, the combined DBS of both targets promoted a substantial amelioration in the performance of daily living activities. These findings indicate that, in patients with advanced Parkinson's disease, PPN-DBS associated with standard STN-DBS may be useful in improving gait and in optimizing the dopamine-mediated ON-state, particularly in those whose response to STN only DBS has deteriorated over time. This combination of targets may also prove useful in extra-pyramidal disorders, such as progressive supranuclear palsy, for which treatments are currently elusive.
Stefani, A., Lozano, A., Peppe, A., Stanzione, P., Galati, S., Tropepi, D., et al. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. BRAIN, 130(Pt 6), 1596-1607 [10.1093/brain/awl346].
Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease
STEFANI, ALESSANDRO;STANZIONE, PAOLO;PIERANTOZZI, MARIANGELA;
2007-06-01
Abstract
Gait disturbances and akinesia are extremely disabling in advanced Parkinson's disease. It has been suggested that modulation of the activity of the pedunculopontine nucleus (PPN) may be beneficial in the treatment of these symptoms. We report the clinical affects of deep brain stimulation (DBS) in the PPN and subthalamic nucleus (STN). Six patients with unsatisfactory pharmacological control of axial signs such as gait and postural stability underwent bilateral implantation of DBS electrodes in the STN and PPN. Clinical effects were evaluated 2-6 months after surgery in the OFF- and ON-medication state, with both STN and PPN stimulation ON or OFF, or with only one target being stimulated. Bilateral PPN-DBS at 25 Hz in OFF-medication produced an immediate 45% amelioration of the motor Unified Parkinson's Disease Rating Scale (UPDRS) subscale score, followed by a decline to give a final improvement of 32% in the score after 3-6 months. In contrast, bilateral STN-DBS at 130-185 Hz led to about 54% improvement. PPN-DBS was particularly effective on gait and postural items. In ON-medication state, the association of STN and PPN-DBS provided a significant further improvement when compared to the specific benefit mediated by the activation of either single target. Moreover, the combined DBS of both targets promoted a substantial amelioration in the performance of daily living activities. These findings indicate that, in patients with advanced Parkinson's disease, PPN-DBS associated with standard STN-DBS may be useful in improving gait and in optimizing the dopamine-mediated ON-state, particularly in those whose response to STN only DBS has deteriorated over time. This combination of targets may also prove useful in extra-pyramidal disorders, such as progressive supranuclear palsy, for which treatments are currently elusive.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.