Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder. © 2014 International Parkinson and Movement Disorder Society.

Maltese, M., Martella, G., Madeo, G., Fagiolo, I., Tassone, A., Ponterio, G., et al. (2014). Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M1 muscarinic receptors. MOVEMENT DISORDERS, 29(13), 1655-1665 [10.1002/mds.26009].

Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M1 muscarinic receptors

MARTELLA, GIUSEPPINA;MADEO, GRAZIELLA;SCIAMANNA, GIUSEPPE;PISANI, ANTONIO
2014-11-01

Abstract

Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder. © 2014 International Parkinson and Movement Disorder Society.
nov-2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
dystonia; muscarinic receptor antagonists; striatum; synaptic plasticity
Maltese, M., Martella, G., Madeo, G., Fagiolo, I., Tassone, A., Ponterio, G., et al. (2014). Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: Role of M1 muscarinic receptors. MOVEMENT DISORDERS, 29(13), 1655-1665 [10.1002/mds.26009].
Maltese, M; Martella, G; Madeo, G; Fagiolo, I; Tassone, A; Ponterio, G; Sciamanna, G; Burbaud, P; Conn, P; Bonsi, P; Pisani, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Maltese_Anticholinergic Drugs Rescue Synaptic.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 903.98 kB
Formato Adobe PDF
903.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/99414
Citazioni
  • ???jsp.display-item.citation.pmc??? 40
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 71
social impact