Melatonin, in addition to its main role as regulator of circadian rhythms, has recently been shown to modulate immune functions by controlling the behaviour of leukocytes, which are indeed able to synthesize melatonin and possess the specific high affinity (1nM) plasma membrane receptors (MT1 and MT2). Great interest is receiving the ability of melatonin to contrast apoptosis, a well accepted fact whose mechanisms however are still quite controversial. In this study, we analyze the mechanisms involved in the anti-apoptotic effect of melatonin in normal and tumor leukocytes. We have shown that this effect is due to two different, cooperating mechanisms, involving two primary targets melatonin directly interacts with, i.e., MT1/MT2 receptors; and calmodulin, a known melatonin low affinity (63uM) target. Receptor engagement and calmodulin binding give rise to two independent signal transduction pathways, consisting of a canonical MT1/MT2 receptor mediated signal transduction (involving G protein and phospholipase C) on the one side, and calmodulin/phospholipase A2 (a known calmodulin interactor)/5-lipoxygenase (LOX) activation culminating in 5-HETE production, on the other. These pathways converge into melatonin anti-apoptotic effect at the mitochondrial level, preventing the activation of Bax, the key trigger of the intrinsic apoptotic pathway. The novelty of this finding is that Bax is maintained within mitochondria in an anti-apoptotic state. Indeed, melatonin causes the translocation of Bcl-2 to mitochondria, which directly binds to Bax inhibiting its activation/dimerization. The anti-apoptotic effect is completely abrogated if one or the other pathway is inhibited. The necessity of the low affinity calmodulin binding explains the requirement of high melatonin doses (>100uM). The involvement of 5-LOX in the anti-apoptotic effect of melatonin is particularly intriguing since, the recruitment of a key enzyme of the inflammatory response may shed new lights on the role melatonin plays in the regulation of the immune response. Moreover, LOX activation implies a burst of free radicals that immediately (<1min) and strongly (up to 15folds) follows melatonin administration, peaking at 2hrs to go back to normal values at 6hrs. This is a biological pro-oxidant effect that co-exists with, and contrasts, the well known chemical radical scavenging ability of the melatonin molecule.

La melatonina, oltre ad essere un regolatore dei ritmi circadiani, è stato recentemente dimostrato essere un modulatore del sistema immunitario attraverso il controllo del comportamento dei leucociti, i quali sono infatti in grado di sintetizzare la melatonina e possiedono specifici recettori di membrana (MT1 e MT2) ad alta affinità (1nM). L’abilità della melatonina di contrastare l’apoptosi sta ricevendo un grande interesse, un effetto ben accetto, nonostante il suo meccanismo sia ancora abbastanza controverso. In questo studio analizziamo il meccanismo coinvolto nell’effetto anti-apoptotico della melatonina in leucociti normali e tumorali. Abbiamo visto che questo effetto è dovuto a due differenti meccanismi cooperanti i quali coinvolgono due target primari con cui la melatonina interagisce; i recettori MT1/MT2 e la calmodulina, un noto target della melatonina a bassa affinità (63 uM). L’interazione con il recettore ed il legame alla calmodulina da origine a due pathways di trasduzione del segnale indipendenti, che consisono da una parte in una trasduzione del segnale canonica (convolgendo le proteine G e la fosfolipasi C), e dall’altra nell’attivazione della 5-lipossigenasi (5-LOX) tramite calmodulina /fosfolipasi A2 (un noto interattore della calmodulina) che termina con la produzione dei 5-HETE. Questi due pathways convergono nell’effetto anti-apoptotico di melatonina a livello mitocondriale, prevenendo l’attivazione di Bax, la chiave che innesca il pathway apoptotico intrinseco. La novità di questi risultati è che Bax è mantenuto nel mitocondrio in una stato anti-apoptotico. Infatti, la melatonina causa la translocazione di Bcl-2 al mitocondrio, dove si lega direttamente a Bax, inibendo la sua attivazione/dimerizzazione. L’effetto anti-apoptotico è completamente abrogato se uno o l’altro pathway viene inibito. La necessità del legame a bassa affinità con la calmodulina, spiega la necessità di alte dosi di melatonina (>100uM). Il coinvolgimento della 5-LOX nell’effetto anti-apoptotico della melatonina è particolarmente interessante dal momento che la necessità di un enzima chiave della risposta infiammatoria può fare nuova luce sul ruolo che la melatonina gioca nella regolazione della risposta immunitaria. Inoltre, l’attivazione della LOX implica uno sprigionarsi di radicali liberi che immediatamente (<1min) e fortemente (fino a 15 volte) segue alla somministrazione di melatonina, raggiungendo un picco a 2 ore per tornare a valori di controllo a 6 ore. Questo è un effetto biologico pro-ossidante che co-esiste e contrasta con la nota abilità della melatonina di radical scavanger.

Radogna, F. (2009). Novel pathways induced by melatonin on leukocytes: possible pharmacological and inflammatory perspectives [10.58015/radogna-flavia_phd2009-08-06].

Novel pathways induced by melatonin on leukocytes: possible pharmacological and inflammatory perspectives

RADOGNA, FLAVIA
2009-08-06

Abstract

Melatonin, in addition to its main role as regulator of circadian rhythms, has recently been shown to modulate immune functions by controlling the behaviour of leukocytes, which are indeed able to synthesize melatonin and possess the specific high affinity (1nM) plasma membrane receptors (MT1 and MT2). Great interest is receiving the ability of melatonin to contrast apoptosis, a well accepted fact whose mechanisms however are still quite controversial. In this study, we analyze the mechanisms involved in the anti-apoptotic effect of melatonin in normal and tumor leukocytes. We have shown that this effect is due to two different, cooperating mechanisms, involving two primary targets melatonin directly interacts with, i.e., MT1/MT2 receptors; and calmodulin, a known melatonin low affinity (63uM) target. Receptor engagement and calmodulin binding give rise to two independent signal transduction pathways, consisting of a canonical MT1/MT2 receptor mediated signal transduction (involving G protein and phospholipase C) on the one side, and calmodulin/phospholipase A2 (a known calmodulin interactor)/5-lipoxygenase (LOX) activation culminating in 5-HETE production, on the other. These pathways converge into melatonin anti-apoptotic effect at the mitochondrial level, preventing the activation of Bax, the key trigger of the intrinsic apoptotic pathway. The novelty of this finding is that Bax is maintained within mitochondria in an anti-apoptotic state. Indeed, melatonin causes the translocation of Bcl-2 to mitochondria, which directly binds to Bax inhibiting its activation/dimerization. The anti-apoptotic effect is completely abrogated if one or the other pathway is inhibited. The necessity of the low affinity calmodulin binding explains the requirement of high melatonin doses (>100uM). The involvement of 5-LOX in the anti-apoptotic effect of melatonin is particularly intriguing since, the recruitment of a key enzyme of the inflammatory response may shed new lights on the role melatonin plays in the regulation of the immune response. Moreover, LOX activation implies a burst of free radicals that immediately (<1min) and strongly (up to 15folds) follows melatonin administration, peaking at 2hrs to go back to normal values at 6hrs. This is a biological pro-oxidant effect that co-exists with, and contrasts, the well known chemical radical scavenging ability of the melatonin molecule.
6-ago-2009
2008/2009
Biologia molecolare e cellulare
21.
La melatonina, oltre ad essere un regolatore dei ritmi circadiani, è stato recentemente dimostrato essere un modulatore del sistema immunitario attraverso il controllo del comportamento dei leucociti, i quali sono infatti in grado di sintetizzare la melatonina e possiedono specifici recettori di membrana (MT1 e MT2) ad alta affinità (1nM). L’abilità della melatonina di contrastare l’apoptosi sta ricevendo un grande interesse, un effetto ben accetto, nonostante il suo meccanismo sia ancora abbastanza controverso. In questo studio analizziamo il meccanismo coinvolto nell’effetto anti-apoptotico della melatonina in leucociti normali e tumorali. Abbiamo visto che questo effetto è dovuto a due differenti meccanismi cooperanti i quali coinvolgono due target primari con cui la melatonina interagisce; i recettori MT1/MT2 e la calmodulina, un noto target della melatonina a bassa affinità (63 uM). L’interazione con il recettore ed il legame alla calmodulina da origine a due pathways di trasduzione del segnale indipendenti, che consisono da una parte in una trasduzione del segnale canonica (convolgendo le proteine G e la fosfolipasi C), e dall’altra nell’attivazione della 5-lipossigenasi (5-LOX) tramite calmodulina /fosfolipasi A2 (un noto interattore della calmodulina) che termina con la produzione dei 5-HETE. Questi due pathways convergono nell’effetto anti-apoptotico di melatonina a livello mitocondriale, prevenendo l’attivazione di Bax, la chiave che innesca il pathway apoptotico intrinseco. La novità di questi risultati è che Bax è mantenuto nel mitocondrio in una stato anti-apoptotico. Infatti, la melatonina causa la translocazione di Bcl-2 al mitocondrio, dove si lega direttamente a Bax, inibendo la sua attivazione/dimerizzazione. L’effetto anti-apoptotico è completamente abrogato se uno o l’altro pathway viene inibito. La necessità del legame a bassa affinità con la calmodulina, spiega la necessità di alte dosi di melatonina (&gt;100uM). Il coinvolgimento della 5-LOX nell’effetto anti-apoptotico della melatonina è particolarmente interessante dal momento che la necessità di un enzima chiave della risposta infiammatoria può fare nuova luce sul ruolo che la melatonina gioca nella regolazione della risposta immunitaria. Inoltre, l’attivazione della LOX implica uno sprigionarsi di radicali liberi che immediatamente (&lt;1min) e fortemente (fino a 15 volte) segue alla somministrazione di melatonina, raggiungendo un picco a 2 ore per tornare a valori di controllo a 6 ore. Questo è un effetto biologico pro-ossidante che co-esiste e contrasta con la nota abilità della melatonina di radical scavanger.
melatonin; lipoxygenase; apoptosis
Settore BIO/09 - FISIOLOGIA
Settore BIOS-06/A - Fisiologia
English
Tesi di dottorato
Radogna, F. (2009). Novel pathways induced by melatonin on leukocytes: possible pharmacological and inflammatory perspectives [10.58015/radogna-flavia_phd2009-08-06].
File in questo prodotto:
File Dimensione Formato  
Tesi Radogna 17x24.pdf

accesso aperto

Licenza: Copyright degli autori
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact