Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that affects upper and lower motor neurons. Previous evidence has indicated that excitotoxic cell death in ALS may remarkably depend on Cl- ion influx through the GABA(A) receptors. In this study we have analysed the effect of Monocyte Chemoattractant Protein-1 (MCP-1), a chemokine expressed to a higher level in ALS patients, on GABA(A) receptors in cultured cortical neurons from a genetic model of ALS (G93A) and compared with wild type SOD1 (SOD1) and their corresponding non transgenic littermates (Control). By performing electrophysiological experiments we have observed that, in cortical neurons MCP-1 (2-150 ng/ml) induced an enhancement of GABA-evoked currents that was significantly higher in G93A neurons compared to controls. The effect of MCP-1 was not dependent on the activation of its receptor CCR2, while it was blocked by flumazenil, the antagonist of benzodiazepine sites. Analysis of GABA(A) receptor subunit composition has indicated an altered subunit expression level in G93A cortical neurons compared to controls. Instead, in cultured spinal neurons MCP-1 induced a significant reduction of GABA-evoked currents, also through the benzodiazepine sites, indicating a region-specific mechanism of action. However, no differences were observed in the current reduction between the three neuronal populations. These findings provide the first evidence that MCP-1, acting on benzodiazepine sites, can modulate the GABA-evoked currents, depending on the subunit composition of GABA(A) receptor. In cortical neurons MCP-1 upmodulates the GABA-evoked current and this effect is exacerbated in the mutated neurons. It is reasonable to assume that the higher Cl- influx through GABA(A) receptors in the presence of MCP-1 in mutated cortical neurons may induce an excitotoxicity acceleration. Agents able to block the MCP-1 production may then prove useful for ALS treatment.

Caioli, S., Pieri, M., Antonini, A., Guglielmotti, A., Severini, C., Zona, C. (2013). Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis. NEUROPHARMACOLOGY [10.1016/j.neuropharm.2013.05.045].

Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis

Pieri, M;ZONA, CRISTINA
2013-01-01

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder that affects upper and lower motor neurons. Previous evidence has indicated that excitotoxic cell death in ALS may remarkably depend on Cl- ion influx through the GABA(A) receptors. In this study we have analysed the effect of Monocyte Chemoattractant Protein-1 (MCP-1), a chemokine expressed to a higher level in ALS patients, on GABA(A) receptors in cultured cortical neurons from a genetic model of ALS (G93A) and compared with wild type SOD1 (SOD1) and their corresponding non transgenic littermates (Control). By performing electrophysiological experiments we have observed that, in cortical neurons MCP-1 (2-150 ng/ml) induced an enhancement of GABA-evoked currents that was significantly higher in G93A neurons compared to controls. The effect of MCP-1 was not dependent on the activation of its receptor CCR2, while it was blocked by flumazenil, the antagonist of benzodiazepine sites. Analysis of GABA(A) receptor subunit composition has indicated an altered subunit expression level in G93A cortical neurons compared to controls. Instead, in cultured spinal neurons MCP-1 induced a significant reduction of GABA-evoked currents, also through the benzodiazepine sites, indicating a region-specific mechanism of action. However, no differences were observed in the current reduction between the three neuronal populations. These findings provide the first evidence that MCP-1, acting on benzodiazepine sites, can modulate the GABA-evoked currents, depending on the subunit composition of GABA(A) receptor. In cortical neurons MCP-1 upmodulates the GABA-evoked current and this effect is exacerbated in the mutated neurons. It is reasonable to assume that the higher Cl- influx through GABA(A) receptors in the presence of MCP-1 in mutated cortical neurons may induce an excitotoxicity acceleration. Agents able to block the MCP-1 production may then prove useful for ALS treatment.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/09 - FISIOLOGIA
English
GABA-induced current; Neurodegeneration; Electrophysiology; Immunosystem; GABA receptor modulator; ALS
Caioli, S., Pieri, M., Antonini, A., Guglielmotti, A., Severini, C., Zona, C. (2013). Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis. NEUROPHARMACOLOGY [10.1016/j.neuropharm.2013.05.045].
Caioli, S; Pieri, M; Antonini, A; Guglielmotti, A; Severini, C; Zona, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
caioli et al. neuroph 2013.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/98829
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact