We show how it is possible to give a precise and unambiguous implementation of the Witten–Veneziano formula for the η′ mass on the lattice, which looks like the formal continuum one, if the expression of the topological charge density operator, suggested by fermions obeying the Ginsparg–Wilson relation, is employed. By using recent numerical results from simulations with overlap fermions in 2 (abelian Schwinger model) and 4 (QCD) dimensions, one obtains values for the mass of the lightest pseudo-scalar flavour-singlet state that agree within errors with theoretical expectations and experimental data, respectively.

Giusti, L., Rossi, G., Testa, M., Veneziano, G. (2002). The U(A)(1) problem on the lattice with Ginsparg-Wilson fermions. NUCLEAR PHYSICS. B, 628, 234-252 [10.1016/S0550-3213(02)00093-7].

The U(A)(1) problem on the lattice with Ginsparg-Wilson fermions

ROSSI, GIANCARLO;
2002-01-01

Abstract

We show how it is possible to give a precise and unambiguous implementation of the Witten–Veneziano formula for the η′ mass on the lattice, which looks like the formal continuum one, if the expression of the topological charge density operator, suggested by fermions obeying the Ginsparg–Wilson relation, is employed. By using recent numerical results from simulations with overlap fermions in 2 (abelian Schwinger model) and 4 (QCD) dimensions, one obtains values for the mass of the lightest pseudo-scalar flavour-singlet state that agree within errors with theoretical expectations and experimental data, respectively.
2002
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
Con Impact Factor ISI
Topological susceptibility, \eta'-mass
hep-lat/0108009
Giusti, L., Rossi, G., Testa, M., Veneziano, G. (2002). The U(A)(1) problem on the lattice with Ginsparg-Wilson fermions. NUCLEAR PHYSICS. B, 628, 234-252 [10.1016/S0550-3213(02)00093-7].
Giusti, L; Rossi, G; Testa, M; Veneziano, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
0108009v2.pdf

accesso aperto

Descrizione: pdf
Dimensione 245.05 kB
Formato Adobe PDF
245.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/98732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact