Human immunodeficiency virus protease inhibitors (HIV-PIs), such as indinavir and saquinavir, have been shown to block angiogenesis and tumor cell invasion and to induce tumor cell apoptosis and growth arrest, respectively, both in vitro and in vivo. These findings have suggested that HIV-PIs or their analogues can be used as antitumor drugs. To this regard, indinavir and saquinavir were assessed for their ability to inhibit in vivo the growth of highly prevalent human tumors, such as lung, breast, colon and hepatic adenocarcinomas. We show here that both HIV-PIs significantly inhibited the growth of all adenocarcinomas tested in the mice model. This was not mediated by effects on proteasome-dependent cell growth arrest or on apoptosis but by the block of angiogenesis and matrix metalloproteinase activity. Accordingly, therapeutic steadystate concentrations of indinavir or saquinavir were highly effective in inhibiting invasion of tumor cells in vitro. In contrast, growth arrest was induced only by high concentrations of saquinavir that are not reached or are only transiently present in plasma of treated patients, likely through a proteasome-mediated mechanism. These data suggest that HIV-PIs or their analogues, characterized by a better biodistribution and lower toxicity, may represent a new class of antitumor drugs capable of targeting both matrix metalloproteinases and the proteasome for a most effective antitumor therapy.

Toschi, E., Sgadari, C., Malavasi, L., Bacigalupo, I., Chiozzini, C., Carlei, D., et al. (2011). Human immunodeficiency virus protease inhibitors reduce the growth of human tumors via proteasome-independent block of angiogenesis and matrix metalloproteinases. INTERNATIONAL JOURNAL OF CANCER, 128, 82-93 [10.1002/ijc.25550].

Human immunodeficiency virus protease inhibitors reduce the growth of human tumors via proteasome-independent block of angiogenesis and matrix metalloproteinases.

BARILLARI, GIOVANNI;
2011-01-01

Abstract

Human immunodeficiency virus protease inhibitors (HIV-PIs), such as indinavir and saquinavir, have been shown to block angiogenesis and tumor cell invasion and to induce tumor cell apoptosis and growth arrest, respectively, both in vitro and in vivo. These findings have suggested that HIV-PIs or their analogues can be used as antitumor drugs. To this regard, indinavir and saquinavir were assessed for their ability to inhibit in vivo the growth of highly prevalent human tumors, such as lung, breast, colon and hepatic adenocarcinomas. We show here that both HIV-PIs significantly inhibited the growth of all adenocarcinomas tested in the mice model. This was not mediated by effects on proteasome-dependent cell growth arrest or on apoptosis but by the block of angiogenesis and matrix metalloproteinase activity. Accordingly, therapeutic steadystate concentrations of indinavir or saquinavir were highly effective in inhibiting invasion of tumor cells in vitro. In contrast, growth arrest was induced only by high concentrations of saquinavir that are not reached or are only transiently present in plasma of treated patients, likely through a proteasome-mediated mechanism. These data suggest that HIV-PIs or their analogues, characterized by a better biodistribution and lower toxicity, may represent a new class of antitumor drugs capable of targeting both matrix metalloproteinases and the proteasome for a most effective antitumor therapy.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/05 - PATOLOGIA CLINICA
English
Con Impact Factor ISI
Toschi, E., Sgadari, C., Malavasi, L., Bacigalupo, I., Chiozzini, C., Carlei, D., et al. (2011). Human immunodeficiency virus protease inhibitors reduce the growth of human tumors via proteasome-independent block of angiogenesis and matrix metalloproteinases. INTERNATIONAL JOURNAL OF CANCER, 128, 82-93 [10.1002/ijc.25550].
Toschi, E; Sgadari, C; Malavasi, L; Bacigalupo, I; Chiozzini, C; Carlei, D; Compagnoni, D; Bellino, S; Bugarini, R; Falchi, M; Palladino, C; Leone, P; Barillari, G; Monini, P; Ensoli, B
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/98152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact