Kaposi's sarcoma (KS) is a vascular tumor frequently occurring in Human Immunodeficiency Virus- (HIV-) 1-infected individuals. Our previous work indicated that the angiogenic fibroblast growth factor (FGF)-2 and the Tat protein of HIV-1, both expressed in KS lesions of HIV-infected patients, synergize at inducing angioproliferative, KS-like lesions in mice. Here we show that the development of angioproliferative lesions promoted in mice by combined Tat and FGF-2 associates with an increase in the levels of expression of the anti-apoptotic Bcl-2 protein. Up-regulation of Bcl-2 expression by combined FGF-2 and Tat occurs also in vitro, and this protects human primary endothelial cells from programmed cell death. As Bcl-2 is expressed in human KS lesions in a fashion paralleling the progression of the disease, these findings suggest a molecular mechanism by which Tat and FGF-2 cooperate in KS maintenance and progression in HIV-infected individuals.
Sgadari, C., Barillari, G., Palladino, C., Bellino, S., Taddeo, B., Toschi, E., et al. (2011). Fibroblast growth factor-2 and the HIV-1 Tat protein synergize in promoting Bcl-2 expression and preventing endothelial cell apoptosis: implications for the pathogenesis of AIDS-associated Kaposi’s sarcoma. INTERNATIONAL JOURNAL OF VASCULAR MEDICINE [10.1155/2011/452729].
Fibroblast growth factor-2 and the HIV-1 Tat protein synergize in promoting Bcl-2 expression and preventing endothelial cell apoptosis: implications for the pathogenesis of AIDS-associated Kaposi’s sarcoma.
BARILLARI, GIOVANNI;
2011-01-01
Abstract
Kaposi's sarcoma (KS) is a vascular tumor frequently occurring in Human Immunodeficiency Virus- (HIV-) 1-infected individuals. Our previous work indicated that the angiogenic fibroblast growth factor (FGF)-2 and the Tat protein of HIV-1, both expressed in KS lesions of HIV-infected patients, synergize at inducing angioproliferative, KS-like lesions in mice. Here we show that the development of angioproliferative lesions promoted in mice by combined Tat and FGF-2 associates with an increase in the levels of expression of the anti-apoptotic Bcl-2 protein. Up-regulation of Bcl-2 expression by combined FGF-2 and Tat occurs also in vitro, and this protects human primary endothelial cells from programmed cell death. As Bcl-2 is expressed in human KS lesions in a fashion paralleling the progression of the disease, these findings suggest a molecular mechanism by which Tat and FGF-2 cooperate in KS maintenance and progression in HIV-infected individuals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.