We present the analysis of the bifurcation sequences of a family of resonant 2-DOF Hamiltonian systems invariant under spatial mirror symmetry and time reversion. The phase- space structure is investigated by a singularity theory approach based on the construction of a universal deformation of the detuned Birkhoff–Gustavson normal form. Thresholds for the bifurcations of periodic orbits in generic position are computed as asymptotic series in terms of physical parameters of the original system.

Marchesiello, A., Pucacco, G. (2014). Universal unfolding of symmetric resonances. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 119, 357-368 [10.1007/s10569-014-9557-4].

Universal unfolding of symmetric resonances

PUCACCO, GIUSEPPE
2014-01-01

Abstract

We present the analysis of the bifurcation sequences of a family of resonant 2-DOF Hamiltonian systems invariant under spatial mirror symmetry and time reversion. The phase- space structure is investigated by a singularity theory approach based on the construction of a universal deformation of the detuned Birkhoff–Gustavson normal form. Thresholds for the bifurcations of periodic orbits in generic position are computed as asymptotic series in terms of physical parameters of the original system.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/05 - ASTRONOMIA E ASTROFISICA
English
Con Impact Factor ISI
Finite-dimensional Hamiltonian systems · Perturbation theory · Normal forms · Bifurcation sequences
Lavoro supportato da INFN e fondi europei Stardust
Marchesiello, A., Pucacco, G. (2014). Universal unfolding of symmetric resonances. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 119, 357-368 [10.1007/s10569-014-9557-4].
Marchesiello, A; Pucacco, G
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
celmec14.pdf

solo utenti autorizzati

Licenza: Copyright dell'editore
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/96789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact