Greene's criterion for twist mappings asserts the existence of smooth invariant circles with preassigned rotation number if and only if the periodic trajectories with frequency approaching that of the quasi-periodic orbit are at the border of linear stability. We formulate an extension of this criterion for conformally symplectic systems in any dimension and prove one direction of the implication, namely, that if there is a smooth invariant attractor, we can predict the eigenvalues of the periodic orbits whose frequencies approximate that of the torus for values of the parameters close to that of the attractor. The proof of this result is very different from the proof in the area-preserving case, since in the conformally symplectic case the existence of periodic orbits requires adjusting parameters. Also, as shown in [R. Calleja, A. Celletti, and R. de la Llave, J. Dynam. Differential Equations, 55 (2013), pp. 821-841], in the conformally symplectic case there are no Birkhoff invariants giving obstructions to linearization near an invariant torus. As a byproduct of the techniques developed here, we obtain quantitative information on the existence of periodic orbits in the neighborhood of quasi-periodic tori, and we provide upper and lower bounds on the width of the phase-locking regions and of the Arnold tongues in n-degrees of freedom conformally symplectic systems.

Calleja, R., Celletti, A., Falcolini, C., de la Llave, R. (2014). An Extension of Greene's criterion for conformally symplectic systems and a partial justification. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 46(4), 2350-2384 [10.1137/130929369].

An Extension of Greene's criterion for conformally symplectic systems and a partial justification

CELLETTI, ALESSANDRA;
2014-01-01

Abstract

Greene's criterion for twist mappings asserts the existence of smooth invariant circles with preassigned rotation number if and only if the periodic trajectories with frequency approaching that of the quasi-periodic orbit are at the border of linear stability. We formulate an extension of this criterion for conformally symplectic systems in any dimension and prove one direction of the implication, namely, that if there is a smooth invariant attractor, we can predict the eigenvalues of the periodic orbits whose frequencies approximate that of the torus for values of the parameters close to that of the attractor. The proof of this result is very different from the proof in the area-preserving case, since in the conformally symplectic case the existence of periodic orbits requires adjusting parameters. Also, as shown in [R. Calleja, A. Celletti, and R. de la Llave, J. Dynam. Differential Equations, 55 (2013), pp. 821-841], in the conformally symplectic case there are no Birkhoff invariants giving obstructions to linearization near an invariant torus. As a byproduct of the techniques developed here, we obtain quantitative information on the existence of periodic orbits in the neighborhood of quasi-periodic tori, and we provide upper and lower bounds on the width of the phase-locking regions and of the Arnold tongues in n-degrees of freedom conformally symplectic systems.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
L'articolo erroneamente non compare su SCOPUS. La casa editrice del SIAM J. Math. An. mi ha detto di contattare direttamente SCOPUS per segnalare l'anomalia. Ho inviato una richiesta a SCOPUS e sono in attesa che l'articolo venga correttamente indicizzato.
Calleja, R., Celletti, A., Falcolini, C., de la Llave, R. (2014). An Extension of Greene's criterion for conformally symplectic systems and a partial justification. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 46(4), 2350-2384 [10.1137/130929369].
Calleja, R; Celletti, A; Falcolini, C; de la Llave, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
CallejaCellettiFalcoliniLlave_Greene.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Licenza: Copyright dell'editore
Dimensione 437.97 kB
Formato Adobe PDF
437.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/95527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact