The stability of invariant (KAM) surfaces for nonintegrable dynamical systems with few degrees of freedom, as a nonlinearity parameter is increased, is considered. A rigorous method, which allows one to construct explicitly such surfaces, is discussed. A byproduct of this method allows one to give lower bounds on breakdown thresholds and applications to the standard map and to a two wave hamiltonian system yield results that agree within 60% with the numerical expectations.

Celletti, A., Chierchia, L. (1988). On rigorous stability results for low-dimensional KAM surfaces. PHYSICS LETTERS A, 128(3-4), 166-168 [10.1016/0375-9601(88)90902-4].

On rigorous stability results for low-dimensional KAM surfaces

CELLETTI, ALESSANDRA;
1988-01-01

Abstract

The stability of invariant (KAM) surfaces for nonintegrable dynamical systems with few degrees of freedom, as a nonlinearity parameter is increased, is considered. A rigorous method, which allows one to construct explicitly such surfaces, is discussed. A byproduct of this method allows one to give lower bounds on breakdown thresholds and applications to the standard map and to a two wave hamiltonian system yield results that agree within 60% with the numerical expectations.
1988
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/07 - FISICA MATEMATICA
English
Celletti, A., Chierchia, L. (1988). On rigorous stability results for low-dimensional KAM surfaces. PHYSICS LETTERS A, 128(3-4), 166-168 [10.1016/0375-9601(88)90902-4].
Celletti, A; Chierchia, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/95504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact