In this thesis a new approach is described for the development of human–computer interfaces. In particular the case of pattern recognition systems based on Hidden Markov Models have been taken into account. The research started from he development of techniques for the realization of natural language speech recognition systems. The Hidden Markov Model (HMM) was chosen as the main algorithmic tool to be used to build the system. After the early work the goal was extended to the development of an hardware architecture that provided a reconfigurable tool to be used in any pattern recognition task, and not only in speech recognition. The whole work is thus focused on the development of dedicated hardware architectures, but also some new results have been obtained on the classification of electroencephalographic signals through the use of HMMs. Firstly a system–level architecture has been developed to be used in HMM based pattern recognition systems. The architecture has been conceived in order to be able to work as a stand–alone system. Then a VHDL description has been made of a flexible and completely reconfigurable hardware HMM processor and the design was successfully simulated. A parallel array of these processors is actually the core processing block of the developed architecture. Then two suitable FPGA based, fast prototyping platforms have been identified to be the targets for the implementation tests. Different configurations of parallel HMM processor arrays have been set up and mapped on the target FPGAs. Some solutions have been selected to be the best in terms of balance between performance and resources utilization. Furthermore a software HMM based pattern recognition system has been chosen to be the reference system for the functionality of the implemented subsystems. A set of tests have been developed with the aim to test the correct functionality of the hardware. The implemented system was compared to the reference system on the basis of the tests’ results, and it was found that the behavior was the one expected and the required functionality was correctly achieved. Finally the implementation of the parallel HMM array was tested through its application to two real–world applications: a speech recognition task and a brain–computer interface task. In both cases the architecture showed to be functionally suitable and powerful enough to handle the task without problems. The application of the hardware processing to speech recognition opens new perspectives in the design of this kind of systems because of the dramatic increment in performance. The application to brain–computer interface is really interesting because of a new approach in the classification of EEG that shows how could be possible a future development of interfaces based on the classification of spontaneous thought. The possible evolution directions of the work started with this thesis are many. Effort could be spent of the implementation of the developed architecture as a stand–alone reconfigurable system suitable for any kind of HMM–based pattern recognition task. The potential performance of such a system could open the way to extremely complex real–time pattern recognition systems, and thus to the realization of truly multimodal interfaces, with a variety of applications, from space to aid systems for the impaired.
In questa tesi viene proposto un nuovo approccio per lo sviluppo di interfacce uomo–macchina. In particolare si tratta il caso di sistemi di pattern recognition che fanno uso di Hidden Markov Models per la classificazione. Il progetto di ricerca è partito dall’ideazione di nuove tecniche per la realizzazione di sistemi di riconoscimento vocale per parlato spontaneo. Gli HMM sono stati scelti come lo strumento algoritmico di base per la realizzazione del sistema. Dopo una fase di studio preliminare gli obiettivi sono stati estesi alla realizzazione di una architettura hardware in grado di fornire uno strumento riconfigurabile che possa essere utilizzato non solo per il riconoscimento vocale, ma in qualsiasi tipo di classificatore basato su HMM. Il lavoro si concentra quindi sullo sviluppo di architetture hardware dedicate, ma nuovi risultati sono stati ottenuti anche a livello di applicazione per quanto riguarda la classificazione di segnali elettroencefalografici attraverso gli HMM. Innanzitutto state sviluppata una architettura a livello di sistema applicabile a qualsiasi sistema di pattern recognition che faccia usi di HMM. L’architettura stata concepita in modo tale da essere utilizzabile come un sistema stand–alone. Definita l’architettura, un processore hardware per HMM, completamente riconfigurabile, stato decritto in linguaggio VHDL e simulato con successo. Un array parallelo di questi processori costituisce di fatto il nucleo di processamento dell’architettura sviluppata. Sulla base del progetto in VHDL, due piattaforme di prototipaggio rapido basate su FPGA sono state selezionate per dei test di implementazione. Diverse configurazioni costituite da array paralleli di processori HMM sono state implementate su FPGA. Le soluzioni che offrivano un miglior compromesso tra prestazioni e quantità di risorse hardware utilizzate sono state selezionate per ulteriori analisi. Un sistema software per il pattern recognition basato su HMM stato scelto come sistema di riferimento per verificare la corretta funzionalità delle architetture implementate. Diversi test sono stati progettati per validare che il funzionamento del sistema corrispondesse alle specifiche iniziali. Le versioni implementate del sistema sono state confrontate con il software di riferimento sulla base dei risultati forniti dai test. Dal confronto è stato possibile appurare che le architetture sviluppate hanno un comportamento corrispondente a quello richiesto. Infine le implementazioni dell’array parallelo di processori HMM `e sono state applicate a due applicazioni reali: un riconoscitore vocale, ed un classificatore per interfacce basate su segnali elettroencefalografici. In entrambi i casi l’architettura si è dimostrata in grado di gestire l’applicazione senza alcun problema. L’uso del processamento hardware per il riconoscimento vocale apre di fatto la strada a nuovi sviluppi nel campo grazie al notevole incremento di prestazioni ottenibili in termini di tempo di esecuzione. L’applicazione al processamento dell’EEG, invece, introduce di fatto un approccio completamente nuovo alla classificazione di questo tipo di segnali, e mostra come in futuro potrebbe essere possibile lo sviluppo di interfacce basate sulla classificazione dei segnali generati dal pensiero spontaneo. I possibili sviluppi del lavoro iniziato con questa tesi sono molteplici. Una direzione possibile è quella dell’implementazione completa dell’architettura proposta come un sistema stand–alone riconfigurabile per l’accelerazione di sistemi per pattern recognition di qualsiasi natura purché basati su HMM. Le potenzialità di tale sistema renderebbero possibile la realizzazione di classificatiori in tempo reale con un alto grado di complessità, e quindi allo sviluppo di interfacce realmente multimodali, con una vasta gamma di applicazioni, dai sistemi di per lo spazio a quelli di supporto per persone disabili.
Malatesta, A. (2009). Design of hardware architectures for HMM–based signal processing systems with applications to advanced human-machine interfaces [10.58015/malatesta-alessandro_phd2009-07-29].
Design of hardware architectures for HMM–based signal processing systems with applications to advanced human-machine interfaces
MALATESTA, ALESSANDRO
2009-07-29
Abstract
In this thesis a new approach is described for the development of human–computer interfaces. In particular the case of pattern recognition systems based on Hidden Markov Models have been taken into account. The research started from he development of techniques for the realization of natural language speech recognition systems. The Hidden Markov Model (HMM) was chosen as the main algorithmic tool to be used to build the system. After the early work the goal was extended to the development of an hardware architecture that provided a reconfigurable tool to be used in any pattern recognition task, and not only in speech recognition. The whole work is thus focused on the development of dedicated hardware architectures, but also some new results have been obtained on the classification of electroencephalographic signals through the use of HMMs. Firstly a system–level architecture has been developed to be used in HMM based pattern recognition systems. The architecture has been conceived in order to be able to work as a stand–alone system. Then a VHDL description has been made of a flexible and completely reconfigurable hardware HMM processor and the design was successfully simulated. A parallel array of these processors is actually the core processing block of the developed architecture. Then two suitable FPGA based, fast prototyping platforms have been identified to be the targets for the implementation tests. Different configurations of parallel HMM processor arrays have been set up and mapped on the target FPGAs. Some solutions have been selected to be the best in terms of balance between performance and resources utilization. Furthermore a software HMM based pattern recognition system has been chosen to be the reference system for the functionality of the implemented subsystems. A set of tests have been developed with the aim to test the correct functionality of the hardware. The implemented system was compared to the reference system on the basis of the tests’ results, and it was found that the behavior was the one expected and the required functionality was correctly achieved. Finally the implementation of the parallel HMM array was tested through its application to two real–world applications: a speech recognition task and a brain–computer interface task. In both cases the architecture showed to be functionally suitable and powerful enough to handle the task without problems. The application of the hardware processing to speech recognition opens new perspectives in the design of this kind of systems because of the dramatic increment in performance. The application to brain–computer interface is really interesting because of a new approach in the classification of EEG that shows how could be possible a future development of interfaces based on the classification of spontaneous thought. The possible evolution directions of the work started with this thesis are many. Effort could be spent of the implementation of the developed architecture as a stand–alone reconfigurable system suitable for any kind of HMM–based pattern recognition task. The potential performance of such a system could open the way to extremely complex real–time pattern recognition systems, and thus to the realization of truly multimodal interfaces, with a variety of applications, from space to aid systems for the impaired.File | Dimensione | Formato | |
---|---|---|---|
Thesis.pdf
accesso aperto
Licenza:
Copyright degli autori
Dimensione
23.07 MB
Formato
Adobe PDF
|
23.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.