Caffeine is the most commonly self-administered psychoactive substance worldwide. At usual doses, the effects of caffeine on vigilance, attention, mood and arousal largely depend on the modulation of central adenosine receptors. The present review article describes the action of caffeine within the striatum, to provide a possible molecular mechanism at the basis of the psychomotor and reinforcing properties of this pharmacological agent. The striatum is in fact a subcortical area involved in sensorimotor, cognitive, and emotional processes, and recent experimental findings showed that chronic caffeine consumption enhances the sensitivity of striatal GABAergic synapses to the stimulation of cannabinoid CB1 receptors. The endocannabinoid system is involved in the psychoactive effects of many compounds, and adenosine A2A receptors (the main receptor target of caffeine) elicit a permissive effect towards CB1 receptors, thus suggesting that A2A-CB1 receptor interaction plays a major role in the generation and maintenance of caffeine reinforcing behavior. Aim of this review is to describe the effects of caffeine on striatal neurotransmission with special reference to the modulation of the endocannabinoid system.

Rossi, S., De Chiara, V., Musella, A., Mataluni, G., Sacchetti, L., Siracusano, A., et al. (2010). Effects of caffeine on striatal neurotransmission: focus on cannabinoid CB1 receptors. MOLECULAR NUTRITION & FOOD RESEARCH, 54(4), 525-531 [10.1002/mnfr.200900237].

Effects of caffeine on striatal neurotransmission: focus on cannabinoid CB1 receptors

SIRACUSANO, ALBERTO;BERNARDI, GIORGIO;CENTONZE, DIEGO
2010-04-01

Abstract

Caffeine is the most commonly self-administered psychoactive substance worldwide. At usual doses, the effects of caffeine on vigilance, attention, mood and arousal largely depend on the modulation of central adenosine receptors. The present review article describes the action of caffeine within the striatum, to provide a possible molecular mechanism at the basis of the psychomotor and reinforcing properties of this pharmacological agent. The striatum is in fact a subcortical area involved in sensorimotor, cognitive, and emotional processes, and recent experimental findings showed that chronic caffeine consumption enhances the sensitivity of striatal GABAergic synapses to the stimulation of cannabinoid CB1 receptors. The endocannabinoid system is involved in the psychoactive effects of many compounds, and adenosine A2A receptors (the main receptor target of caffeine) elicit a permissive effect towards CB1 receptors, thus suggesting that A2A-CB1 receptor interaction plays a major role in the generation and maintenance of caffeine reinforcing behavior. Aim of this review is to describe the effects of caffeine on striatal neurotransmission with special reference to the modulation of the endocannabinoid system.
apr-2010
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Corpus Striatum; Psychomotor Performance; Central Nervous System Stimulants; Receptor, Cannabinoid, CB1; Behavior; Caffeine; Animals; Receptor, Adenosine A2A; Synaptic Transmission; Humans
Rossi, S., De Chiara, V., Musella, A., Mataluni, G., Sacchetti, L., Siracusano, A., et al. (2010). Effects of caffeine on striatal neurotransmission: focus on cannabinoid CB1 receptors. MOLECULAR NUTRITION & FOOD RESEARCH, 54(4), 525-531 [10.1002/mnfr.200900237].
Rossi, S; De Chiara, V; Musella, A; Mataluni, G; Sacchetti, L; Siracusano, A; Bernardi, G; Usiello, A; Centonze, D
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/9433
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact