We consider weak non-negative solutions to the critical $p$-Laplace equation in $\mathbb{R}^N$ \begin{equation}\nonumber -\Delta_p u =u^{p^*-1}\,, \end{equation} in the singular case $1<p<2$. We prove that if %the nonlinearity is locally Lipschitz continuous, namely $p^*\geqslant2$ then all the solutions in ${\mathcal D}^{1,p}(\R^N)$ are radial (and radially decreasing) about some point.

Damascelli, L., Merchan, S., Montoro, L., Sciunzi, B. (2014). Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$. ADVANCES IN MATHEMATICS, 265, 313-335 [10.1016/j.aim.2014.08.004].

Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$

DAMASCELLI, LUCIO;
2014-01-01

Abstract

We consider weak non-negative solutions to the critical $p$-Laplace equation in $\mathbb{R}^N$ \begin{equation}\nonumber -\Delta_p u =u^{p^*-1}\,, \end{equation} in the singular case $1
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05 - ANALISI MATEMATICA
English
Degenerate elliptic equations Qualitative properties of the solutions Moving plane method
Damascelli, L., Merchan, S., Montoro, L., Sciunzi, B. (2014). Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$. ADVANCES IN MATHEMATICS, 265, 313-335 [10.1016/j.aim.2014.08.004].
Damascelli, L; Merchan, S; Montoro, L; Sciunzi, B
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
DMMS-Adv.Math.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Licenza: Copyright dell'editore
Dimensione 493.13 kB
Formato Adobe PDF
493.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/93813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact