We consider weak non-negative solutions to the critical $p$-Laplace equation in $\mathbb{R}^N$ \begin{equation}\nonumber -\Delta_p u =u^{p^*-1}\,, \end{equation} in the singular case $1<p<2$. We prove that if %the nonlinearity is locally Lipschitz continuous, namely $p^*\geqslant2$ then all the solutions in ${\mathcal D}^{1,p}(\R^N)$ are radial (and radially decreasing) about some point.
Damascelli, L., Merchan, S., Montoro, L., Sciunzi, B. (2014). Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$. ADVANCES IN MATHEMATICS, 265, 313-335 [10.1016/j.aim.2014.08.004].
Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in~$\mathbb{R}^N$
DAMASCELLI, LUCIO;
2014-01-01
Abstract
We consider weak non-negative solutions to the critical $p$-Laplace equation in $\mathbb{R}^N$ \begin{equation}\nonumber -\Delta_p u =u^{p^*-1}\,, \end{equation} in the singular case $1
File | Dimensione | Formato | |
---|---|---|---|
DMMS-Adv.Math.pdf
solo utenti autorizzati
Descrizione: Articolo Principale
Licenza:
Copyright dell'editore
Dimensione
493.13 kB
Formato
Adobe PDF
|
493.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.