Mediterranean trout populations display a diversity of phenotypes, representing a valuable model for the study of adaptation and a puzzling dilemma for taxonomists and biogeographers, which is further entangled by the widespread introgression of allochthonous genes. In this paper we analysed DNA polymorphism at multiple loci (sequence variation of the mitochondrial control region and eight nuclear fragments and length variation at eleven nuclear microsatellite loci) in representative samples of the autochthonous taxonomic diversity described in Italian trout populations (Salmo marmoratus, S. carpio, S. cenerinus, S. cettii and S. fibreni) and in samples from hatchery-originated strains of Atlantic S. trutta. We employed model-based clustering and Approximate Bayesian Computation in order to: (i) describe the phylogeographic structure of Italian autochthonous trout populations; (ii) evaluate a set of evolutionary/biogeographic models. The inclusion of hatchery-originated strains allowed to account for man-mediated allochthonous introgression in Italian populations. Our results (i) showed that the analysed sample consists of two main autochthonous evolutionary lineages, including the marble trout populations on one side (‘marble’ lineage) and the three peninsular populations of S. cettii, S. cenerinus and S. fibreni on the other side (‘peninsular’ lineage); (ii) indicated that S. carpio originated from a ‘peninsular’ population, with a possible, limited contribution from the ‘marble’ lineage; (iii) pointed out that the ‘marble’ lineage started diverging before the separation of the ‘peninsular’ lineage from Atlantic S. trutta; (iv) suggested that a model of divergence involving gene flow from the ‘peninsular’ population into the ancestral gene pool of ‘marble’ trout is most consistent with the genetic data; (v) provided evidence that the autochthonous trout gene pools in the Tyrrhenian and Adriatic basins of the Italian peninsula started diverging very recently (most likely after the last glacial maximum).

Gratton, P., Allegrucci, G., Sbordoni, V., Gandolfi, A. (2014). The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region. A multilocus Bayesian approach. MOLECULAR PHYLOGENETICS AND EVOLUTION, 79, 292-304 [10.1016/j.ympev.2014.06.022].

The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region. A multilocus Bayesian approach.

GRATTON, PAOLO;ALLEGRUCCI, GIULIANA;SBORDONI, VALERIO;
2014-01-01

Abstract

Mediterranean trout populations display a diversity of phenotypes, representing a valuable model for the study of adaptation and a puzzling dilemma for taxonomists and biogeographers, which is further entangled by the widespread introgression of allochthonous genes. In this paper we analysed DNA polymorphism at multiple loci (sequence variation of the mitochondrial control region and eight nuclear fragments and length variation at eleven nuclear microsatellite loci) in representative samples of the autochthonous taxonomic diversity described in Italian trout populations (Salmo marmoratus, S. carpio, S. cenerinus, S. cettii and S. fibreni) and in samples from hatchery-originated strains of Atlantic S. trutta. We employed model-based clustering and Approximate Bayesian Computation in order to: (i) describe the phylogeographic structure of Italian autochthonous trout populations; (ii) evaluate a set of evolutionary/biogeographic models. The inclusion of hatchery-originated strains allowed to account for man-mediated allochthonous introgression in Italian populations. Our results (i) showed that the analysed sample consists of two main autochthonous evolutionary lineages, including the marble trout populations on one side (‘marble’ lineage) and the three peninsular populations of S. cettii, S. cenerinus and S. fibreni on the other side (‘peninsular’ lineage); (ii) indicated that S. carpio originated from a ‘peninsular’ population, with a possible, limited contribution from the ‘marble’ lineage; (iii) pointed out that the ‘marble’ lineage started diverging before the separation of the ‘peninsular’ lineage from Atlantic S. trutta; (iv) suggested that a model of divergence involving gene flow from the ‘peninsular’ population into the ancestral gene pool of ‘marble’ trout is most consistent with the genetic data; (v) provided evidence that the autochthonous trout gene pools in the Tyrrhenian and Adriatic basins of the Italian peninsula started diverging very recently (most likely after the last glacial maximum).
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/05 - ZOOLOGIA
English
Con Impact Factor ISI
Salmo; Approximate Bayesian Computation; Nuclear DNA sequences; MtDNA, Microsatellite; Phylogeography;
Gratton, P., Allegrucci, G., Sbordoni, V., Gandolfi, A. (2014). The evolutionary jigsaw puzzle of the surviving trout (Salmo trutta L. complex) diversity in the Italian region. A multilocus Bayesian approach. MOLECULAR PHYLOGENETICS AND EVOLUTION, 79, 292-304 [10.1016/j.ympev.2014.06.022].
Gratton, P; Allegrucci, G; Sbordoni, V; Gandolfi, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/92094
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact