We carry out a detailed study of \Xi^+, a distinguished G-invariant Stein domain in the complexification of an irreducible Hermitian symmetric space G/K . The domain\Xi^+ contains the crown domain \Xi and is naturally diffeomorphic to the anti-holomorphic tangent bundle of G/K . The unipotent parametrization of \Xi^+ introduced in Krötz and Opdam (GAFA Geom Funct Anal 18:1326–1421, 2008) and Krötz (Invent Math 172:277–288, 2008) suggests that \Xi^+ also admits the structure of a twisted bundle G ×_K N^+, with fiber a nilpotent cone N^+ . Here we give a complete proof of this fact and use it to describe the G-orbit structure of \Xi^+ via the K-orbit structure of N^+. In the tube case, we also single out a Stein, G-invariant domain contained in \Xi^+ \setminus \Xi which is relevant in the classification of envelopes of holomorphy of invariant subdomains of \Xi^+.

Geatti, L., Iannuzzi, A. (2014). Orbit structure of a distinguished Stein invariant domain in the complexification of a Hermitian symmetric space. MATHEMATISCHE ZEITSCHRIFT, 278(3-4), 769-793 [10.1007/s00209-014-1333-3].

Orbit structure of a distinguished Stein invariant domain in the complexification of a Hermitian symmetric space

GEATTI, LAURA;IANNUZZI, ANDREA
2014-01-01

Abstract

We carry out a detailed study of \Xi^+, a distinguished G-invariant Stein domain in the complexification of an irreducible Hermitian symmetric space G/K . The domain\Xi^+ contains the crown domain \Xi and is naturally diffeomorphic to the anti-holomorphic tangent bundle of G/K . The unipotent parametrization of \Xi^+ introduced in Krötz and Opdam (GAFA Geom Funct Anal 18:1326–1421, 2008) and Krötz (Invent Math 172:277–288, 2008) suggests that \Xi^+ also admits the structure of a twisted bundle G ×_K N^+, with fiber a nilpotent cone N^+ . Here we give a complete proof of this fact and use it to describe the G-orbit structure of \Xi^+ via the K-orbit structure of N^+. In the tube case, we also single out a Stein, G-invariant domain contained in \Xi^+ \setminus \Xi which is relevant in the classification of envelopes of holomorphy of invariant subdomains of \Xi^+.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/03 - GEOMETRIA
English
Con Impact Factor ISI
Hermitian symmetric space · Lie group complexification · Invariant Stein domain
http://link.springer.com/article/10.1007/s00209-014-1333-3
Geatti, L., Iannuzzi, A. (2014). Orbit structure of a distinguished Stein invariant domain in the complexification of a Hermitian symmetric space. MATHEMATISCHE ZEITSCHRIFT, 278(3-4), 769-793 [10.1007/s00209-014-1333-3].
Geatti, L; Iannuzzi, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
MathZeit14.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Licenza: Copyright dell'editore
Dimensione 757.38 kB
Formato Adobe PDF
757.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/91915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact